tcpdump(8) - dump traffic on a network



  • 
    TCPDUMP(8)                  System Manager's Manual                 TCPDUMP(8)
    
    
    
    NAME
           tcpdump - dump traffic on a network
    
    SYNOPSIS
           tcpdump [ -AbdDefhHIJKlLnNOpqStuUvxX# ] [ -B buffer_size ]
                   [ -c count ]
                   [ -C file_size ] [ -G rotate_seconds ] [ -F file ]
                   [ -i interface ] [ -j tstamp_type ] [ -m module ] [ -M secret ]
                   [ --number ] [ -Q|-P in|out|inout ]
                   [ -r file ] [ -V file ] [ -s snaplen ] [ -T type ] [ -w file ]
                   [ -W filecount ]
                   [ -E spi@ipaddr algo:secret,...  ]
                   [ -y datalinktype ] [ -z postrotate-command ] [ -Z user ]
                   [ --time-stamp-precision=tstamp_precision ]
                   [ --immediate-mode ] [ --version ]
                   [ expression ]
    
    DESCRIPTION
           Tcpdump  prints  out a description of the contents of packets on a net‐
           work interface that match the boolean expression;  the  description  is
           preceded  by a time stamp, printed, by default, as hours, minutes, sec‐
           onds, and fractions of a second since midnight.  It  can  also  be  run
           with the -w flag, which causes it to save the packet data to a file for
           later analysis, and/or with the -r flag, which causes it to read from a
           saved packet file rather than to read packets from a network interface.
           It can also be run with the -V flag, which causes it to read a list  of
           saved  packet  files.  In all cases, only packets that match expression
           will be processed by tcpdump.
    
           Tcpdump will, if not run with the -c flag, continue  capturing  packets
           until  it is interrupted by a SIGINT signal (generated, for example, by
           typing your interrupt character, typically control-C) or a SIGTERM sig‐
           nal  (typically generated with the kill(1) command); if run with the -c
           flag, it will capture packets until it is interrupted by  a  SIGINT  or
           SIGTERM signal or the specified number of packets have been processed.
    
           When tcpdump finishes capturing packets, it will report counts of:
    
                  packets ``captured'' (this is the number of packets that tcpdump
                  has received and processed);
    
                  packets ``received by filter'' (the meaning of this  depends  on
                  the  OS on which you're running tcpdump, and possibly on the way
                  the OS was configured - if a filter was specified on the command
                  line,  on some OSes it counts packets regardless of whether they
                  were matched by the filter expression and,  even  if  they  were
                  matched  by the filter expression, regardless of whether tcpdump
                  has read and processed them yet, on other OSes  it  counts  only
                  packets that were matched by the filter expression regardless of
                  whether tcpdump has read and processed them yet,  and  on  other
                  OSes  it  counts  only  packets  that were matched by the filter
                  expression and were processed by tcpdump);
    
                  packets ``dropped by kernel'' (this is  the  number  of  packets
                  that  were dropped, due to a lack of buffer space, by the packet
                  capture mechanism in the OS on which tcpdump is running, if  the
                  OS  reports that information to applications; if not, it will be
                  reported as 0).
    
           On platforms that  support  the  SIGINFO  signal,  such  as  most  BSDs
           (including  Mac  OS  X)  and  Digital/Tru64  UNIX, it will report those
           counts when it receives a SIGINFO signal (generated,  for  example,  by
           typing your ``status'' character, typically control-T, although on some
           platforms, such as Mac OS X, the ``status'' character  is  not  set  by
           default,  so  you must set it with stty(1) in order to use it) and will
           continue capturing packets. On platforms that do not support  the  SIG‐
           INFO signal, the same can be achieved by using the SIGUSR1 signal.
    
           Reading packets from a network interface may require that you have spe‐
           cial privileges; see the pcap (3PCAP) man page for details.  Reading  a
           saved packet file doesn't require special privileges.
    
    OPTIONS
           -A     Print each packet (minus its link level header) in ASCII.  Handy
                  for capturing web pages.
    
           -b     Print the AS number in BGP packets in ASDOT notation rather than
                  ASPLAIN notation.
    
           -B buffer_size
           --buffer-size=buffer_size
                  Set  the operating system capture buffer size to buffer_size, in
                  units of KiB (1024 bytes).
    
           -c count
                  Exit after receiving count packets.
    
           -C file_size
                  Before writing a raw packet to a  savefile,  check  whether  the
                  file  is  currently  larger than file_size and, if so, close the
                  current savefile and open a new one.  Savefiles after the  first
                  savefile  will  have the name specified with the -w flag, with a
                  number after it, starting at 1 and continuing upward.  The units
                  of  file_size  are  millions  of  bytes  (1,000,000  bytes,  not
                  1,048,576 bytes).
    
           -d     Dump the compiled packet-matching code in a human readable  form
                  to standard output and stop.
    
           -dd    Dump packet-matching code as a C program fragment.
    
           -ddd   Dump  packet-matching  code  as decimal numbers (preceded with a
                  count).
    
           -D
           --list-interfaces
                  Print the list of the network interfaces available on the system
                  and  on  which  tcpdump  can  capture packets.  For each network
                  interface, a number and an interface name, possibly followed  by
                  a  text description of the interface, is printed.  The interface
                  name or the number can be supplied to the -i flag to specify  an
                  interface on which to capture.
    
                  This  can be useful on systems that don't have a command to list
                  them (e.g., Windows systems, or UNIX  systems  lacking  ifconfig
                  -a); the number can be useful on Windows 2000 and later systems,
                  where the interface name is a somewhat complex string.
    
                  The -D flag will not be supported if tcpdump was built  with  an
                  older version of libpcap that lacks the pcap_findalldevs() func‐
                  tion.
    
           -e     Print the link-level header on each  dump  line.   This  can  be
                  used,  for  example,  to print MAC layer addresses for protocols
                  such as Ethernet and IEEE 802.11.
    
           -E     Use spi@ipaddr algo:secret for decrypting IPsec ESP packets that
                  are addressed to addr and contain Security Parameter Index value
                  spi. This combination may be repeated with comma or newline sep‐
                  aration.
    
                  Note  that  setting the secret for IPv4 ESP packets is supported
                  at this time.
    
                  Algorithms may  be  des-cbc,  3des-cbc,  blowfish-cbc,  rc3-cbc,
                  cast128-cbc,  or  none.  The default is des-cbc.  The ability to
                  decrypt packets is only present if  tcpdump  was  compiled  with
                  cryptography enabled.
    
                  secret is the ASCII text for ESP secret key.  If preceded by 0x,
                  then a hex value will be read.
    
                  The option assumes RFC2406 ESP, not RFC1827 ESP.  The option  is
                  only  for  debugging purposes, and the use of this option with a
                  true `secret' key is discouraged.  By  presenting  IPsec  secret
                  key  onto  command line you make it visible to others, via ps(1)
                  and other occasions.
    
                  In addition to the above syntax, the syntax  file  name  may  be
                  used  to  have  tcpdump  read  the provided file in. The file is
                  opened upon receiving the first ESP packet, so any special  per‐
                  missions  that  tcpdump  may have been given should already have
                  been given up.
    
           -f     Print `foreign' IPv4 addresses numerically rather than  symboli‐
                  cally  (this option is intended to get around serious brain dam‐
                  age in Sun's NIS server — usually it hangs  forever  translating
                  non-local internet numbers).
    
                  The  test  for  `foreign'  IPv4 addresses is done using the IPv4
                  address and netmask of the interface on which capture  is  being
                  done.   If that address or netmask are not available, available,
                  either because the interface on which capture is being done  has
                  no  address  or  netmask or because the capture is being done on
                  the Linux "any" interface, which can capture on  more  than  one
                  interface, this option will not work correctly.
    
           -F file
                  Use  file  as  input  for  the filter expression.  An additional
                  expression given on the command line is ignored.
    
           -G rotate_seconds
                  If specified, rotates the dump file specified with the -w option
                  every  rotate_seconds  seconds.   Savefiles  will  have the name
                  specified by -w which should include a time format as defined by
                  strftime(3).  If no time format is specified, each new file will
                  overwrite the previous.
    
                  If used in conjunction with the -C option, filenames  will  take
                  the form of `file<count>'.
    
           -h
           --help Print  the  tcpdump  and  libpcap version strings, print a usage
                  message, and exit.
    
           --version
                  Print the tcpdump and libpcap version strings and exit.
    
           -H     Attempt to detect 802.11s draft mesh headers.
    
           -i interface
           --interface=interface
                  Listen on interface.  If unspecified, tcpdump searches the  sys‐
                  tem interface list for the lowest numbered, configured up inter‐
                  face (excluding loopback), which may turn out to be,  for  exam‐
                  ple, ``eth0''.
    
                  On  Linux  systems with 2.2 or later kernels, an interface argu‐
                  ment of ``any'' can be used to capture packets from  all  inter‐
                  faces.   Note  that  captures  on the ``any'' device will not be
                  done in promiscuous mode.
    
                  If the -D flag is supported, an interface number as  printed  by
                  that flag can be used as the interface argument, if no interface
                  on the system has that number as a name.
    
           -I
           --monitor-mode
                  Put the interface in "monitor mode"; this is supported  only  on
                  IEEE 802.11 Wi-Fi interfaces, and supported only on some operat‐
                  ing systems.
    
                  Note that in monitor mode the adapter  might  disassociate  from
                  the  network with which it's associated, so that you will not be
                  able to use any wireless networks with that adapter.  This could
                  prevent  accessing  files on a network server, or resolving host
                  names or network addresses, if you are capturing in monitor mode
                  and are not connected to another network with another adapter.
    
                  This  flag  will  affect the output of the -L flag.  If -I isn't
                  specified, only those link-layer types  available  when  not  in
                  monitor mode will be shown; if -I is specified, only those link-
                  layer types available when in monitor mode will be shown.
    
           --immediate-mode
                  Capture in "immediate mode".  In this mode, packets  are  deliv‐
                  ered  to  tcpdump  as  soon  as  they  arrive, rather than being
                  buffered for efficiency.  This  is  the  default  when  printing
                  packets  rather  than  saving  packets  to a ``savefile'' if the
                  packets are being printed to a terminal rather than to a file or
                  pipe.
    
           -j tstamp_type
           --time-stamp-type=tstamp_type
                  Set  the  time  stamp  type for the capture to tstamp_type.  The
                  names to use for  the  time  stamp  types  are  given  in  pcap-
                  tstamp(7);  not  all  the types listed there will necessarily be
                  valid for any given interface.
    
           -J
           --list-time-stamp-types
                  List the supported time stamp types for the interface and  exit.
                  If  the time stamp type cannot be set for the interface, no time
                  stamp types are listed.
    
           --time-stamp-precision=tstamp_precision
                  When capturing, set the time stamp precision for the capture  to
                  tstamp_precision.  Note that availability of high precision time
                  stamps (nanoseconds) and their actual accuracy is  platform  and
                  hardware  dependent.   Also note that when writing captures made
                  with nanosecond accuracy to a  savefile,  the  time  stamps  are
                  written with nanosecond resolution, and the file is written with
                  a different magic number, to indicate that the time  stamps  are
                  in  seconds  and  nanoseconds;  not  all programs that read pcap
                  savefiles will be able to read those captures.
    
           When reading a savefile, convert time stamps to the precision specified
           by  timestamp_precision, and display them with that resolution.  If the
           precision specified is less than the precision of time  stamps  in  the
           file, the conversion will lose precision.
    
           The  supported values for timestamp_precision are micro for microsecond
           resolution  and  nano  for  nanosecond  resolution.   The  default   is
           microsecond resolution.
    
           -K
           --dont-verify-checksums
                  Don't attempt to verify IP, TCP, or UDP checksums.  This is use‐
                  ful for interfaces that perform some or all  of  those  checksum
                  calculation  in  hardware; otherwise, all outgoing TCP checksums
                  will be flagged as bad.
    
           -l     Make stdout line buffered.  Useful if you want to see  the  data
                  while capturing it.  E.g.,
    
                         tcpdump -l | tee dat
    
                  or
    
                         tcpdump -l > dat & tail -f dat
    
                  Note  that on Windows,``line buffered'' means ``unbuffered'', so
                  that WinDump will write each character  individually  if  -l  is
                  specified.
    
                  -U is similar to -l in its behavior, but it will cause output to
                  be ``packet-buffered'', so that the output is written to  stdout
                  at  the  end of each packet rather than at the end of each line;
                  this is buffered on all platforms, including Windows.
    
           -L
           --list-data-link-types
                  List the known data link types for the interface, in the  speci‐
                  fied  mode,  and exit.  The list of known data link types may be
                  dependent on the specified mode; for example, on some platforms,
                  a  Wi-Fi interface might support one set of data link types when
                  not in monitor mode (for example, it  might  support  only  fake
                  Ethernet  headers,  or might support 802.11 headers but not sup‐
                  port 802.11 headers with radio information) and another  set  of
                  data link types when in monitor mode (for example, it might sup‐
                  port 802.11 headers, or 802.11 headers with  radio  information,
                  only in monitor mode).
    
           -m module
                  Load  SMI  MIB module definitions from file module.  This option
                  can be used several times to load several MIB modules into  tcp‐
                  dump.
    
           -M secret
                  Use  secret  as a shared secret for validating the digests found
                  in TCP segments with the TCP-MD5 option (RFC 2385), if present.
    
           -n     Don't convert host addresses to names.   This  can  be  used  to
                  avoid DNS lookups.
    
           -nn    Don't convert protocol and port numbers etc. to names either.
    
           -N     Don't  print  domain name qualification of host names.  E.g., if
                  you give this flag then tcpdump will print  ``nic''  instead  of
                  ``nic.ddn.mil''.
    
           -#
           --number
                  Print an optional packet number at the beginning of the line.
    
           -O
           --no-optimize
                  Do  not  run the packet-matching code optimizer.  This is useful
                  only if you suspect a bug in the optimizer.
    
           -p
           --no-promiscuous-mode
                  Don't put the interface into promiscuous mode.   Note  that  the
                  interface  might  be  in promiscuous mode for some other reason;
                  hence, `-p' cannot be used as an abbreviation  for  `ether  host
                  {local-hw-addr} or ether broadcast'.
    
           -Q|-P direction
           --direction=direction
                  Choose send/receive direction direction for which packets should
                  be captured. Possible values are `in', `out'  and  `inout'.  Not
                  available on all platforms.
    
           -q     Quick  (quiet?) output.  Print less protocol information so out‐
                  put lines are shorter.
    
           -r file
                  Read packets from file (which was created with the -w option  or
                  by  other  tools  that  write  pcap or pcap-ng files).  Standard
                  input is used if file is ``-''.
    
           -S
           --absolute-tcp-sequence-numbers
                  Print absolute, rather than relative, TCP sequence numbers.
    
           -s snaplen
           --snapshot-length=snaplen
                  Snarf snaplen bytes of data from each  packet  rather  than  the
                  default of 262144 bytes.  Packets truncated because of a limited
                  snapshot are indicated in the output  with  ``[|proto]'',  where
                  proto  is the name of the protocol level at which the truncation
                  has occurred.  Note that taking larger snapshots both  increases
                  the amount of time it takes to process packets and, effectively,
                  decreases the amount of packet buffering.  This may cause  pack‐
                  ets to be lost.  You should limit snaplen to the smallest number
                  that will capture the protocol information you're interested in.
                  Setting snaplen to 0 sets it to the default of 262144, for back‐
                  wards compatibility with recent older versions of tcpdump.
    
           -T type
                  Force packets selected by "expression"  to  be  interpreted  the
                  specified  type.   Currently  known  types  are aodv (Ad-hoc On-
                  demand Distance Vector protocol), carp  (Common  Address  Redun‐
                  dancy  Protocol),  cnfp (Cisco NetFlow protocol), lmp (Link Man‐
                  agement Protocol), pgm (Pragmatic General Multicast),  pgm_zmtp1
                  (ZMTP/1.0 inside PGM/EPGM), resp (REdis Serialization Protocol),
                  radius (RADIUS), rpc (Remote  Procedure  Call),  rtp  (Real-Time
                  Applications  protocol),  rtcp  (Real-Time  Applications control
                  protocol),  snmp  (Simple  Network  Management  Protocol),  tftp
                  (Trivial  File  Transfer  Protocol), vat (Visual Audio Tool), wb
                  (distributed White Board), zmtp1 (ZeroMQ Message Transport  Pro‐
                  tocol 1.0) and vxlan (Virtual eXtensible Local Area Network).
    
                  Note  that  the  pgm type above affects UDP interpretation only,
                  the native PGM is always recognised as IP protocol  113  regard‐
                  less. UDP-encapsulated PGM is often called "EPGM" or "PGM/UDP".
    
                  Note  that  the  pgm_zmtp1  type above affects interpretation of
                  both native PGM and UDP at once. During the native PGM  decoding
                  the  application  data of an ODATA/RDATA packet would be decoded
                  as a ZeroMQ datagram  with  ZMTP/1.0  frames.   During  the  UDP
                  decoding  in addition to that any UDP packet would be treated as
                  an encapsulated PGM packet.
    
           -t     Don't print a timestamp on each dump line.
    
           -tt    Print the timestamp, as seconds since January 1, 1970, 00:00:00,
                  UTC,  and  fractions  of  a second since that time, on each dump
                  line.
    
           -ttt   Print a delta (micro-second resolution) between current and pre‐
                  vious line on each dump line.
    
           -tttt  Print  a timestamp, as hours, minutes, seconds, and fractions of
                  a second since midnight, preceded by  the  date,  on  each  dump
                  line.
    
           -ttttt Print  a  delta  (micro-second  resolution)  between current and
                  first line on each dump line.
    
           -u     Print undecoded NFS handles.
    
           -U
           --packet-buffered
                  If the -w option is not specified, make the printed packet  out‐
                  put  ``packet-buffered'';  i.e.,  as the description of the con‐
                  tents of each packet is printed, it will be written to the stan‐
                  dard  output, rather than, when not writing to a terminal, being
                  written only when the output buffer fills.
    
                  If the -w option is specified, make the saved raw packet  output
                  ``packet-buffered'';  i.e.,  as each packet is saved, it will be
                  written to the output file, rather than being written only  when
                  the output buffer fills.
    
                  The  -U  flag will not be supported if tcpdump was built with an
                  older version of libpcap that lacks the pcap_dump_flush()  func‐
                  tion.
    
           -v     When  parsing and printing, produce (slightly more) verbose out‐
                  put.  For example,  the  time  to  live,  identification,  total
                  length  and  options  in an IP packet are printed.  Also enables
                  additional packet integrity checks such as verifying the IP  and
                  ICMP header checksum.
    
                  When writing to a file with the -w option, report, every 10 sec‐
                  onds, the number of packets captured.
    
           -vv    Even more verbose output.  For example,  additional  fields  are
                  printed  from  NFS  reply  packets,  and  SMB  packets are fully
                  decoded.
    
           -vvv   Even more verbose output.  For example, telnet SB ... SE options
                  are  printed in full.  With -X Telnet options are printed in hex
                  as well.
    
           -V file
                  Read a list of filenames from file. Standard input  is  used  if
                  file is ``-''.
    
           -w file
                  Write  the  raw packets to file rather than parsing and printing
                  them out.  They can later be printed with the -r option.   Stan‐
                  dard output is used if file is ``-''.
    
                  This  output will be buffered if written to a file or pipe, so a
                  program reading from the file or pipe may not see packets for an
                  arbitrary  amount  of  time after they are received.  Use the -U
                  flag to cause  packets  to  be  written  as  soon  as  they  are
                  received.
    
                  The  MIME  type application/vnd.tcpdump.pcap has been registered
                  with IANA for pcap files. The filename extension  .pcap  appears
                  to  be  the most commonly used along with .cap and .dmp. Tcpdump
                  itself doesn't check the extension when  reading  capture  files
                  and  doesn't  add  an extension when writing them (it uses magic
                  numbers in the file header  instead).  However,  many  operating
                  systems and applications will use the extension if it is present
                  and adding one (e.g. .pcap) is recommended.
    
                  See pcap-savefile(5) for a description of the file format.
    
           -W     Used in conjunction with the -C option, this will limit the num‐
                  ber  of  files  created to the specified number, and begin over‐
                  writing files from the beginning,  thus  creating  a  'rotating'
                  buffer.  In addition, it will name the files with enough leading
                  0s to support the maximum number of files, allowing them to sort
                  correctly.
    
                  Used in conjunction with the -G option, this will limit the num‐
                  ber of rotated dump files that get created, exiting with  status
                  0 when reaching the limit. If used with -C as well, the behavior
                  will result in cyclical files per timeslice.
    
           -x     When parsing and printing, in addition to printing  the  headers
                  of  each  packet,  print the data of each packet (minus its link
                  level header) in hex.  The  smaller  of  the  entire  packet  or
                  snaplen  bytes  will  be  printed.  Note that this is the entire
                  link-layer packet, so for link layers that pad (e.g.  Ethernet),
                  the  padding  bytes  will  also be printed when the higher layer
                  packet is shorter than the required padding.
    
           -xx    When parsing and printing, in addition to printing  the  headers
                  of  each  packet,  print  the data of each packet, including its
                  link level header, in hex.
    
           -X     When parsing and printing, in addition to printing  the  headers
                  of  each  packet,  print the data of each packet (minus its link
                  level header)  in  hex  and  ASCII.   This  is  very  handy  for
                  analysing new protocols.
    
           -XX    When  parsing  and printing, in addition to printing the headers
                  of each packet, print the data of  each  packet,  including  its
                  link level header, in hex and ASCII.
    
           -y datalinktype
           --linktype=datalinktype
                  Set  the  data  link  type  to  use  while  capturing packets to
                  datalinktype.
    
           -z postrotate-command
                  Used in conjunction with the -C or -G options,  this  will  make
                  tcpdump  run " postrotate-command file " where file is the save‐
                  file being closed after each rotation. For  example,  specifying
                  -z  gzip  or  -z bzip2 will compress each savefile using gzip or
                  bzip2.
    
                  Note that tcpdump will run the command in parallel to  the  cap‐
                  ture, using the lowest priority so that this doesn't disturb the
                  capture process.
    
                  And in case you would like to use a command  that  itself  takes
                  flags  or  different  arguments,  you  can  always write a shell
                  script that will take the savefile name as  the  only  argument,
                  make  the flags & arguments arrangements and execute the command
                  that you want.
    
           -Z user
           --relinquish-privileges=user
                  If tcpdump is running as root, after opening the capture  device
                  or  input savefile, but before opening any savefiles for output,
                  change the user ID to user and the group ID to the primary group
                  of user.
    
                  This behavior can also be enabled by default at compile time.
    
            expression
                  selects  which  packets  will  be  dumped.   If no expression is
                  given, all packets on the net will be dumped.   Otherwise,  only
                  packets for which expression is `true' will be dumped.
    
                  For the expression syntax, see pcap-filter(7).
    
                  The  expression  argument  can  be passed to tcpdump as either a
                  single Shell argument, or as multiple Shell arguments, whichever
                  is more convenient.  Generally, if the expression contains Shell
                  metacharacters, such as  backslashes  used  to  escape  protocol
                  names,  it  is  easier  to  pass it as a single, quoted argument
                  rather than to escape the Shell metacharacters.  Multiple  argu‐
                  ments are concatenated with spaces before being parsed.
    
    EXAMPLES
           To print all packets arriving at or departing from sundown:
                  tcpdump host sundown
    
           To print traffic between helios and either hot or ace:
                  tcpdump host helios and \( hot or ace \)
    
           To print all IP packets between ace and any host except helios:
                  tcpdump ip host ace and not helios
    
           To print all traffic between local hosts and hosts at Berkeley:
                  tcpdump net ucb-ether
    
           To  print all ftp traffic through internet gateway snup: (note that the
           expression is quoted to prevent the shell from  (mis-)interpreting  the
           parentheses):
                  tcpdump 'gateway snup and (port ftp or ftp-data)'
    
           To  print traffic neither sourced from nor destined for local hosts (if
           you gateway to one other net, this stuff should never make it onto your
           local net).
                  tcpdump ip and not net localnet
    
           To  print  the  start and end packets (the SYN and FIN packets) of each
           TCP conversation that involves a non-local host.
                  tcpdump 'tcp[tcpflags] & (tcp-syn|tcp-fin) != 0 and not src and dst net localnet'
    
           To print all IPv4 HTTP packets to and from port  80,  i.e.  print  only
           packets  that  contain  data, not, for example, SYN and FIN packets and
           ACK-only packets.  (IPv6 is left as an exercise for the reader.)
                  tcpdump 'tcp port 80 and (((ip[2:2] - ((ip[0]&0xf)<<2)) - ((tcp[12]&0xf0)>>2)) != 0)'
    
           To print IP packets longer than 576 bytes sent through gateway snup:
                  tcpdump 'gateway snup and ip[2:2] > 576'
    
           To print IP broadcast or multicast packets that were not sent via  Eth‐
           ernet broadcast or multicast:
                  tcpdump 'ether[0] & 1 = 0 and ip[16] >= 224'
    
           To print all ICMP packets that are not echo requests/replies (i.e., not
           ping packets):
                  tcpdump 'icmp[icmptype] != icmp-echo and icmp[icmptype] != icmp-echoreply'
    
    OUTPUT FORMAT
           The output of tcpdump is protocol dependent.   The  following  gives  a
           brief description and examples of most of the formats.
    
           Link Level Headers
    
           If  the '-e' option is given, the link level header is printed out.  On
           Ethernets, the source and destination addresses, protocol,  and  packet
           length are printed.
    
           On  FDDI  networks, the  '-e' option causes tcpdump to print the `frame
           control' field,  the source and destination addresses, and  the  packet
           length.   (The  `frame control' field governs the interpretation of the
           rest of the packet.  Normal packets (such as those containing IP  data‐
           grams)  are `async' packets, with a priority value between 0 and 7; for
           example, `async4'.  Such packets are assumed to contain an 802.2  Logi‐
           cal  Link  Control (LLC) packet; the LLC header is printed if it is not
           an ISO datagram or a so-called SNAP packet.
    
           On Token Ring networks, the '-e' option causes  tcpdump  to  print  the
           `access control' and `frame control' fields, the source and destination
           addresses, and the packet length.  As on  FDDI  networks,  packets  are
           assumed  to  contain  an  LLC  packet.   Regardless of whether the '-e'
           option is specified or not, the source routing information  is  printed
           for source-routed packets.
    
           On  802.11 networks, the '-e' option causes tcpdump to print the `frame
           control' fields, all of the addresses in the  802.11  header,  and  the
           packet  length.  As on FDDI networks, packets are assumed to contain an
           LLC packet.
    
           (N.B.: The following description assumes familiarity with the SLIP com‐
           pression algorithm described in RFC-1144.)
    
           On SLIP links, a direction indicator (``I'' for inbound, ``O'' for out‐
           bound), packet type, and compression information are printed out.   The
           packet  type is printed first.  The three types are ip, utcp, and ctcp.
           No further link information is printed for ip packets.  For  TCP  pack‐
           ets,  the  connection identifier is printed following the type.  If the
           packet is compressed, its encoded header is printed out.   The  special
           cases are printed out as *S+n and *SA+n, where n is the amount by which
           the sequence number (or sequence number and ack) has changed.  If it is
           not  a  special  case,  zero  or more changes are printed.  A change is
           indicated by U (urgent pointer), W (window), A (ack), S (sequence  num‐
           ber), and I (packet ID), followed by a delta (+n or -n), or a new value
           (=n).  Finally, the amount of data in the packet and compressed  header
           length are printed.
    
           For  example,  the  following  line  shows  an  outbound compressed TCP
           packet, with an implicit connection identifier; the ack has changed  by
           6, the sequence number by 49, and the packet ID by 6; there are 3 bytes
           of data and 6 bytes of compressed header:
                  O ctcp * A+6 S+49 I+6 3 (6)
    
           ARP/RARP Packets
    
           Arp/rarp output shows the type of request and its arguments.  The  for‐
           mat  is  intended to be self explanatory.  Here is a short sample taken
           from the start of an `rlogin' from host rtsg to host csam:
                  arp who-has csam tell rtsg
                  arp reply csam is-at CSAM
           The first line says that rtsg sent an arp packet asking for the  Ether‐
           net  address  of  internet  host  csam.  Csam replies with its Ethernet
           address (in this example, Ethernet addresses are in caps  and  internet
           addresses in lower case).
    
           This would look less redundant if we had done tcpdump -n:
                  arp who-has 128.3.254.6 tell 128.3.254.68
                  arp reply 128.3.254.6 is-at 02:07:01:00:01:c4
    
           If  we had done tcpdump -e, the fact that the first packet is broadcast
           and the second is point-to-point would be visible:
                  RTSG Broadcast 0806  64: arp who-has csam tell rtsg
                  CSAM RTSG 0806  64: arp reply csam is-at CSAM
           For the first packet this says the Ethernet source address is RTSG, the
           destination is the Ethernet broadcast address, the type field contained
           hex 0806 (type ETHER_ARP) and the total length was 64 bytes.
    
           TCP Packets
    
           (N.B.:The following description assumes familiarity with the TCP proto‐
           col  described  in RFC-793.  If you are not familiar with the protocol,
           neither this description nor tcpdump will be of much use to you.)
    
           The general format of a tcp protocol line is:
                  src > dst: flags data-seqno ack window urgent options
           Src and dst are the source and  destination  IP  addresses  and  ports.
           Flags  are  some  combination of S (SYN), F (FIN), P (PUSH), R (RST), U
           (URG), W (ECN CWR), E (ECN-Echo) or `.' (ACK), or `none'  if  no  flags
           are set.  Data-seqno describes the portion of sequence space covered by
           the data in this packet (see example below).  Ack is sequence number of
           the  next data expected the other direction on this connection.  Window
           is the number of bytes of receive  buffer  space  available  the  other
           direction  on this connection.  Urg indicates there is `urgent' data in
           the packet.  Options are tcp options enclosed in angle brackets  (e.g.,
           <mss 1024>).
    
           Src,  dst and flags are always present.  The other fields depend on the
           contents of the packet's tcp protocol header and  are  output  only  if
           appropriate.
    
           Here is the opening portion of an rlogin from host rtsg to host csam.
                  rtsg.1023 > csam.login: S 768512:768512(0) win 4096 <mss 1024>
                  csam.login > rtsg.1023: S 947648:947648(0) ack 768513 win 4096 <mss 1024>
                  rtsg.1023 > csam.login: . ack 1 win 4096
                  rtsg.1023 > csam.login: P 1:2(1) ack 1 win 4096
                  csam.login > rtsg.1023: . ack 2 win 4096
                  rtsg.1023 > csam.login: P 2:21(19) ack 1 win 4096
                  csam.login > rtsg.1023: P 1:2(1) ack 21 win 4077
                  csam.login > rtsg.1023: P 2:3(1) ack 21 win 4077 urg 1
                  csam.login > rtsg.1023: P 3:4(1) ack 21 win 4077 urg 1
           The  first  line  says that tcp port 1023 on rtsg sent a packet to port
           login on csam.  The S indicates that the SYN flag was set.  The  packet
           sequence  number was 768512 and it contained no data.  (The notation is
           `first:last(nbytes)' which means `sequence numbers first up to but  not
           including  last  which  is  nbytes  bytes of user data'.)  There was no
           piggy-backed ack, the available receive window was 4096 bytes and there
           was a max-segment-size option requesting an mss of 1024 bytes.
    
           Csam  replies  with  a similar packet except it includes a piggy-backed
           ack for rtsg's SYN.  Rtsg then acks csam's SYN.  The `.' means the  ACK
           flag  was  set.   The  packet  contained  no  data  so there is no data
           sequence number.  Note that the ack sequence number is a small  integer
           (1).   The  first time tcpdump sees a tcp `conversation', it prints the
           sequence number from the packet.  On subsequent packets of the  conver‐
           sation, the difference between the current packet's sequence number and
           this initial sequence number is printed.  This means that sequence num‐
           bers  after  the first can be interpreted as relative byte positions in
           the conversation's data stream (with the first data byte each direction
           being  `1').   `-S'  will  override  this feature, causing the original
           sequence numbers to be output.
    
           On the 6th line, rtsg sends csam 19 bytes of data (bytes 2  through  20
           in  the rtsg → csam side of the conversation).  The PUSH flag is set in
           the packet.  On the 7th line, csam says it's received data sent by rtsg
           up  to but not including byte 21.  Most of this data is apparently sit‐
           ting in the socket buffer since csam's receive  window  has  gotten  19
           bytes  smaller.   Csam  also  sends  one  byte  of data to rtsg in this
           packet.  On the 8th and 9th lines, csam  sends  two  bytes  of  urgent,
           pushed data to rtsg.
    
           If  the  snapshot was small enough that tcpdump didn't capture the full
           TCP header, it interprets as much of the header  as  it  can  and  then
           reports  ``[|tcp]'' to indicate the remainder could not be interpreted.
           If the header contains a bogus option (one with a length that's  either
           too  small  or  beyond  the  end  of the header), tcpdump reports it as
           ``[bad opt]'' and does not interpret any further  options  (since  it's
           impossible  to  tell where they start).  If the header length indicates
           options are present but the IP datagram length is not long  enough  for
           the  options  to  actually  be  there, tcpdump reports it as ``[bad hdr
           length]''.
    
           Capturing TCP packets with particular flag combinations (SYN-ACK,  URG-
           ACK, etc.)
    
           There are 8 bits in the control bits section of the TCP header:
    
                  CWR | ECE | URG | ACK | PSH | RST | SYN | FIN
    
           Let's  assume  that we want to watch packets used in establishing a TCP
           connection.  Recall that TCP uses a 3-way handshake  protocol  when  it
           initializes  a  new  connection; the connection sequence with regard to
           the TCP control bits is
    
                  1) Caller sends SYN
                  2) Recipient responds with SYN, ACK
                  3) Caller sends ACK
    
           Now we're interested in capturing packets that have only  the  SYN  bit
           set  (Step  1).  Note that we don't want packets from step 2 (SYN-ACK),
           just a plain initial SYN.  What we need is a correct filter  expression
           for tcpdump.
    
           Recall the structure of a TCP header without options:
    
            0                            15                              31
           -----------------------------------------------------------------
           |          source port          |       destination port        |
           -----------------------------------------------------------------
           |                        sequence number                        |
           -----------------------------------------------------------------
           |                     acknowledgment number                     |
           -----------------------------------------------------------------
           |  HL   | rsvd  |C|E|U|A|P|R|S|F|        window size            |
           -----------------------------------------------------------------
           |         TCP checksum          |       urgent pointer          |
           -----------------------------------------------------------------
    
           A  TCP  header  usually  holds  20  octets  of data, unless options are
           present.  The first line of the graph contains octets 0 - 3, the second
           line shows octets 4 - 7 etc.
    
           Starting  to  count with 0, the relevant TCP control bits are contained
           in octet 13:
    
            0             7|             15|             23|             31
           ----------------|---------------|---------------|----------------
           |  HL   | rsvd  |C|E|U|A|P|R|S|F|        window size            |
           ----------------|---------------|---------------|----------------
           |               |  13th octet   |               |               |
    
           Let's have a closer look at octet no. 13:
    
                           |               |
                           |---------------|
                           |C|E|U|A|P|R|S|F|
                           |---------------|
                           |7   5   3     0|
    
           These are the TCP control bits we are interested in.  We have  numbered
           the  bits  in  this octet from 0 to 7, right to left, so the PSH bit is
           bit number 3, while the URG bit is number 5.
    
           Recall that we want to capture packets with only SYN  set.   Let's  see
           what happens to octet 13 if a TCP datagram arrives with the SYN bit set
           in its header:
    
                           |C|E|U|A|P|R|S|F|
                           |---------------|
                           |0 0 0 0 0 0 1 0|
                           |---------------|
                           |7 6 5 4 3 2 1 0|
    
           Looking at the control bits section we see that only bit number 1 (SYN)
           is set.
    
           Assuming  that  octet number 13 is an 8-bit unsigned integer in network
           byte order, the binary value of this octet is
    
                  00000010
    
           and its decimal representation is
    
              7     6     5     4     3     2     1     0
           0*2 + 0*2 + 0*2 + 0*2 + 0*2 + 0*2 + 1*2 + 0*2  =  2
    
           We're almost done, because now we know that if only  SYN  is  set,  the
           value  of the 13th octet in the TCP header, when interpreted as a 8-bit
           unsigned integer in network byte order, must be exactly 2.
    
           This relationship can be expressed as
                  tcp[13] == 2
    
           We can use this expression as the filter for tcpdump in order to  watch
           packets which have only SYN set:
                  tcpdump -i xl0 tcp[13] == 2
    
           The expression says "let the 13th octet of a TCP datagram have the dec‐
           imal value 2", which is exactly what we want.
    
           Now, let's assume that we need to capture SYN  packets,  but  we  don't
           care  if  ACK  or  any  other  TCP control bit is set at the same time.
           Let's see what happens to octet 13 when a TCP datagram with SYN-ACK set
           arrives:
    
                |C|E|U|A|P|R|S|F|
                |---------------|
                |0 0 0 1 0 0 1 0|
                |---------------|
                |7 6 5 4 3 2 1 0|
    
           Now  bits 1 and 4 are set in the 13th octet.  The binary value of octet
           13 is
    
                       00010010
    
           which translates to decimal
    
              7     6     5     4     3     2     1     0
           0*2 + 0*2 + 0*2 + 1*2 + 0*2 + 0*2 + 1*2 + 0*2   = 18
    
           Now we can't just use 'tcp[13] == 18' in the tcpdump filter expression,
           because that would select only those packets that have SYN-ACK set, but
           not those with only SYN set.  Remember that we don't care if ACK or any
           other control bit is set as long as SYN is set.
    
           In order to achieve our goal, we need to logically AND the binary value
           of octet 13 with some other value to preserve the  SYN  bit.   We  know
           that  we  want  SYN  to  be set in any case, so we'll logically AND the
           value in the 13th octet with the binary value of a SYN:
    
                     00010010 SYN-ACK              00000010 SYN
                AND  00000010 (we want SYN)   AND  00000010 (we want SYN)
                     --------                      --------
                =    00000010                 =    00000010
    
           We see that this AND operation  delivers  the  same  result  regardless
           whether ACK or another TCP control bit is set.  The decimal representa‐
           tion of the AND value as well as the result  of  this  operation  is  2
           (binary 00000010), so we know that for packets with SYN set the follow‐
           ing relation must hold true:
    
                  ( ( value of octet 13 ) AND ( 2 ) ) == ( 2 )
    
           This points us to the tcpdump filter expression
                       tcpdump -i xl0 'tcp[13] & 2 == 2'
    
           Some offsets and field values may be expressed as names rather than  as
           numeric values. For example tcp[13] may be replaced with tcp[tcpflags].
           The following TCP flag field values are also available:  tcp-fin,  tcp-
           syn, tcp-rst, tcp-push, tcp-act, tcp-urg.
    
           This can be demonstrated as:
                       tcpdump -i xl0 'tcp[tcpflags] & tcp-push != 0'
    
           Note that you should use single quotes or a backslash in the expression
           to hide the AND ('&') special character from the shell.
    
           UDP Packets
    
           UDP format is illustrated by this rwho packet:
                  actinide.who > broadcast.who: udp 84
           This says that port who on host actinide sent a udp  datagram  to  port
           who on host broadcast, the Internet broadcast address.  The packet con‐
           tained 84 bytes of user data.
    
           Some UDP services are recognized (from the source or  destination  port
           number) and the higher level protocol information printed.  In particu‐
           lar, Domain Name service requests (RFC-1034/1035)  and  Sun  RPC  calls
           (RFC-1050) to NFS.
    
           UDP Name Server Requests
    
           (N.B.:The  following  description  assumes  familiarity with the Domain
           Service protocol described in RFC-1035.  If you are not  familiar  with
           the  protocol,  the  following description will appear to be written in
           greek.)
    
           Name server requests are formatted as
                  src > dst: id op? flags qtype qclass name (len)
                  h2opolo.1538 > helios.domain: 3+ A? ucbvax.berkeley.edu. (37)
           Host h2opolo asked the domain server on helios for  an  address  record
           (qtype=A)  associated  with the name ucbvax.berkeley.edu.  The query id
           was `3'.  The `+' indicates the recursion desired flag  was  set.   The
           query  length was 37 bytes, not including the UDP and IP protocol head‐
           ers.  The query operation was the normal one, Query, so  the  op  field
           was  omitted.   If  the  op  had been anything else, it would have been
           printed between the `3' and the `+'.  Similarly,  the  qclass  was  the
           normal  one,  C_IN,  and  omitted.   Any  other  qclass would have been
           printed immediately after the `A'.
    
           A few anomalies are checked and may result in extra fields enclosed  in
           square  brackets:   If a query contains an answer, authority records or
           additional records section, ancount, nscount, or arcount are printed as
           `[na]', `[nn]' or  `[nau]' where n is the appropriate count.  If any of
           the response bits are set (AA, RA or rcode) or  any  of  the  `must  be
           zero' bits are set in bytes two and three, `[b2&3=x]' is printed, where
           x is the hex value of header bytes two and three.
    
           UDP Name Server Responses
    
           Name server responses are formatted as
                  src > dst:  id op rcode flags a/n/au type class data (len)
                  helios.domain > h2opolo.1538: 3 3/3/7 A 128.32.137.3 (273)
                  helios.domain > h2opolo.1537: 2 NXDomain* 0/1/0 (97)
           In the first example, helios responds to query id 3 from h2opolo with 3
           answer  records,  3  name server records and 7 additional records.  The
           first answer record is type  A  (address)  and  its  data  is  internet
           address  128.32.137.3.   The  total size of the response was 273 bytes,
           excluding UDP and IP headers.  The op (Query) and response code  (NoEr‐
           ror) were omitted, as was the class (C_IN) of the A record.
    
           In  the second example, helios responds to query 2 with a response code
           of non-existent domain (NXDomain) with no answers, one name server  and
           no  authority records.  The `*' indicates that the authoritative answer
           bit was set.  Since there were no answers, no type, class or data  were
           printed.
    
           Other  flag  characters that might appear are `-' (recursion available,
           RA, not set) and `|' (truncated message, TC, set).  If  the  `question'
           section doesn't contain exactly one entry, `[nq]' is printed.
    
           SMB/CIFS decoding
    
           tcpdump now includes fairly extensive SMB/CIFS/NBT decoding for data on
           UDP/137, UDP/138 and TCP/139.  Some primitive decoding of IPX and  Net‐
           BEUI SMB data is also done.
    
           By  default  a fairly minimal decode is done, with a much more detailed
           decode done if -v is used.  Be warned that with -v a single SMB  packet
           may  take  up a page or more, so only use -v if you really want all the
           gory details.
    
           For information on SMB packet formats and what all the fields mean  see
           www.cifs.org   or  the  pub/samba/specs/  directory  on  your  favorite
           samba.org mirror site.  The SMB patches were written by Andrew Tridgell
           ([email protected]).
    
           NFS Requests and Replies
    
           Sun NFS (Network File System) requests and replies are printed as:
                  src.sport > dst.nfs: NFS request xid xid len op args
                  src.nfs > dst.dport: NFS reply xid xid reply stat len op results
                  sushi.1023 > wrl.nfs: NFS request xid 26377
                       112 readlink fh 21,24/10.73165
                  wrl.nfs > sushi.1023: NFS reply xid 26377
                       reply ok 40 readlink "../var"
                  sushi.1022 > wrl.nfs: NFS request xid 8219
                       144 lookup fh 9,74/4096.6878 "xcolors"
                  wrl.nfs > sushi.1022: NFS reply xid 8219
                       reply ok 128 lookup fh 9,74/4134.3150
           In the first line, host sushi sends a transaction with id 26377 to wrl.
           The request was 112 bytes, excluding the UDP and IP headers.  The oper‐
           ation  was  a  readlink  (read  symbolic  link)  on  file  handle  (fh)
           21,24/10.731657119.  (If one is lucky, as in this case, the file handle
           can be interpreted as a major,minor device number pair, followed by the
           inode number and generation number.) In the second  line,  wrl  replies
           `ok' with the same transaction id and the contents of the link.
    
           In  the  third  line,  sushi  asks  (using a new transaction id) wrl to
           lookup the name `xcolors' in  directory  file  9,74/4096.6878.  In  the
           fourth line, wrl sends a reply with the respective transaction id.
    
           Note  that  the data printed depends on the operation type.  The format
           is intended to be self explanatory if read in conjunction with  an  NFS
           protocol  spec.   Also  note that older versions of tcpdump printed NFS
           packets in a slightly different format: the transaction id (xid)  would
           be printed instead of the non-NFS port number of the packet.
    
           If  the  -v (verbose) flag is given, additional information is printed.
           For example:
                  sushi.1023 > wrl.nfs: NFS request xid 79658
                       148 read fh 21,11/12.195 8192 bytes @ 24576
                  wrl.nfs > sushi.1023: NFS reply xid 79658
                       reply ok 1472 read REG 100664 ids 417/0 sz 29388
           (-v also prints the  IP  header  TTL,  ID,  length,  and  fragmentation
           fields, which have been omitted from this example.)  In the first line,
           sushi asks wrl to read 8192 bytes from file 21,11/12.195, at byte  off‐
           set  24576.   Wrl  replies `ok'; the packet shown on the second line is
           the first fragment of the reply, and hence is only 1472 bytes long (the
           other bytes will follow in subsequent fragments, but these fragments do
           not have NFS or even UDP headers and so might not be printed, depending
           on  the filter expression used).  Because the -v flag is given, some of
           the file attributes (which are returned in addition to the  file  data)
           are  printed:  the file type (``REG'', for regular file), the file mode
           (in octal), the uid and gid, and the file size.
    
           If the -v flag is given more than once, even more details are printed.
    
           Note that NFS requests are very large and much of the detail  won't  be
           printed  unless  snaplen is increased.  Try using `-s 192' to watch NFS
           traffic.
    
           NFS reply  packets  do  not  explicitly  identify  the  RPC  operation.
           Instead,  tcpdump  keeps track of ``recent'' requests, and matches them
           to the replies using the transaction ID.  If a reply does  not  closely
           follow the corresponding request, it might not be parsable.
    
           AFS Requests and Replies
    
           Transarc AFS (Andrew File System) requests and replies are printed as:
    
                  src.sport > dst.dport: rx packet-type
                  src.sport > dst.dport: rx packet-type service call call-name args
                  src.sport > dst.dport: rx packet-type service reply call-name args
                  elvis.7001 > pike.afsfs:
                       rx data fs call rename old fid 536876964/1/1 ".newsrc.new"
                       new fid 536876964/1/1 ".newsrc"
                  pike.afsfs > elvis.7001: rx data fs reply rename
           In the first line, host elvis sends a RX packet to pike.  This was a RX
           data packet to the fs (fileserver) service, and is the start of an  RPC
           call.   The  RPC  call  was a rename, with the old directory file id of
           536876964/1/1 and an old filename of `.newsrc.new', and a new directory
           file  id  of  536876964/1/1  and a new filename of `.newsrc'.  The host
           pike responds with a RPC reply to the rename call (which  was  success‐
           ful, because it was a data packet and not an abort packet).
    
           In  general,  all AFS RPCs are decoded at least by RPC call name.  Most
           AFS RPCs have at least some of the arguments  decoded  (generally  only
           the `interesting' arguments, for some definition of interesting).
    
           The  format is intended to be self-describing, but it will probably not
           be useful to people who are not familiar with the workings of  AFS  and
           RX.
    
           If  the  -v  (verbose) flag is given twice, acknowledgement packets and
           additional header information is printed, such as the RX call ID,  call
           number, sequence number, serial number, and the RX packet flags.
    
           If  the -v flag is given twice, additional information is printed, such
           as the RX call ID, serial number, and the RX  packet  flags.   The  MTU
           negotiation information is also printed from RX ack packets.
    
           If  the -v flag is given three times, the security index and service id
           are printed.
    
           Error codes are printed for abort packets, with the exception  of  Ubik
           beacon  packets  (because  abort packets are used to signify a yes vote
           for the Ubik protocol).
    
           Note that AFS requests are very large and many of the  arguments  won't
           be  printed  unless  snaplen is increased.  Try using `-s 256' to watch
           AFS traffic.
    
           AFS reply  packets  do  not  explicitly  identify  the  RPC  operation.
           Instead,  tcpdump  keeps track of ``recent'' requests, and matches them
           to the replies using the call number and service ID.  If a  reply  does
           not closely follow the corresponding request, it might not be parsable.
    
    
           KIP AppleTalk (DDP in UDP)
    
           AppleTalk DDP packets encapsulated in UDP datagrams are de-encapsulated
           and dumped as DDP packets (i.e., all the UDP header information is dis‐
           carded).   The file /etc/atalk.names is used to translate AppleTalk net
           and node numbers to names.  Lines in this file have the form
                  number    name
    
                  1.254          ether
                  16.1      icsd-net
                  1.254.110 ace
           The first two lines give the names of AppleTalk  networks.   The  third
           line  gives the name of a particular host (a host is distinguished from
           a net by the 3rd octet in the number -  a  net  number  must  have  two
           octets  and a host number must have three octets.)  The number and name
           should  be   separated   by   whitespace   (blanks   or   tabs).    The
           /etc/atalk.names  file  may contain blank lines or comment lines (lines
           starting with a `#').
    
           AppleTalk addresses are printed in the form
                  net.host.port
    
                  144.1.209.2 > icsd-net.112.220
                  office.2 > icsd-net.112.220
                  jssmag.149.235 > icsd-net.2
           (If the /etc/atalk.names doesn't exist or doesn't contain an entry  for
           some AppleTalk host/net number, addresses are printed in numeric form.)
           In the first example, NBP (DDP port 2) on net 144.1 node 209 is sending
           to  whatever is listening on port 220 of net icsd node 112.  The second
           line is the same except the full name  of  the  source  node  is  known
           (`office').   The third line is a send from port 235 on net jssmag node
           149 to broadcast on the icsd-net NBP  port  (note  that  the  broadcast
           address (255) is indicated by a net name with no host number - for this
           reason it's a good idea to keep node names and net  names  distinct  in
           /etc/atalk.names).
    
           NBP  (name  binding  protocol) and ATP (AppleTalk transaction protocol)
           packets have their contents interpreted.  Other protocols just dump the
           protocol name (or number if no name is registered for the protocol) and
           packet size.
    
           NBP packets are formatted like the following examples:
                  icsd-net.112.220 > jssmag.2: nbp-lkup 190: "=:LaserWriter@*"
                  jssmag.209.2 > icsd-net.112.220: nbp-reply 190: "RM1140:LaserWriter@*" 250
                  techpit.2 > icsd-net.112.220: nbp-reply 190: "techpit:LaserWriter@*" 186
           The first line is a name lookup request for laserwriters  sent  by  net
           icsd  host  112 and broadcast on net jssmag.  The nbp id for the lookup
           is 190.  The second line shows a reply for this request (note  that  it
           has  the same id) from host jssmag.209 saying that it has a laserwriter
           resource named "RM1140" registered on port  250.   The  third  line  is
           another  reply  to the same request saying host techpit has laserwriter
           "techpit" registered on port 186.
    
           ATP packet formatting is demonstrated by the following example:
                  jssmag.209.165 > helios.132: atp-req  12266<0-7> 0xae030001
                  helios.132 > jssmag.209.165: atp-resp 12266:0 (512) 0xae040000
                  helios.132 > jssmag.209.165: atp-resp 12266:1 (512) 0xae040000
                  helios.132 > jssmag.209.165: atp-resp 12266:2 (512) 0xae040000
                  helios.132 > jssmag.209.165: atp-resp 12266:3 (512) 0xae040000
                  helios.132 > jssmag.209.165: atp-resp 12266:4 (512) 0xae040000
                  helios.132 > jssmag.209.165: atp-resp 12266:5 (512) 0xae040000
                  helios.132 > jssmag.209.165: atp-resp 12266:6 (512) 0xae040000
                  helios.132 > jssmag.209.165: atp-resp*12266:7 (512) 0xae040000
                  jssmag.209.165 > helios.132: atp-req  12266<3,5> 0xae030001
                  helios.132 > jssmag.209.165: atp-resp 12266:3 (512) 0xae040000
                  helios.132 > jssmag.209.165: atp-resp 12266:5 (512) 0xae040000
                  jssmag.209.165 > helios.132: atp-rel  12266<0-7> 0xae030001
                  jssmag.209.133 > helios.132: atp-req* 12267<0-7> 0xae030002
           Jssmag.209 initiates transaction id 12266 with host helios by  request‐
           ing  up  to  8 packets (the `<0-7>').  The hex number at the end of the
           line is the value of the `userdata' field in the request.
    
           Helios responds with 8 512-byte packets.  The  `:digit'  following  the
           transaction  id gives the packet sequence number in the transaction and
           the number in parens is the amount of data in the packet, excluding the
           atp header.  The `*' on packet 7 indicates that the EOM bit was set.
    
           Jssmag.209  then  requests that packets 3 & 5 be retransmitted.  Helios
           resends them then jssmag.209 releases the transaction.   Finally,  jss‐
           mag.209  initiates  the next request.  The `*' on the request indicates
           that XO (`exactly once') was not set.
    
    
           IP Fragmentation
    
           Fragmented Internet datagrams are printed as
                  (frag id:size@offset+)
                  (frag id:size@offset)
           (The first form indicates there are more fragments.  The  second  indi‐
           cates this is the last fragment.)
    
           Id  is the fragment id.  Size is the fragment size (in bytes) excluding
           the IP header.  Offset is this fragment's  offset  (in  bytes)  in  the
           original datagram.
    
           The  fragment information is output for each fragment.  The first frag‐
           ment contains the higher level protocol header and  the  frag  info  is
           printed  after the protocol info.  Fragments after the first contain no
           higher level protocol header and the frag info  is  printed  after  the
           source  and destination addresses.  For example, here is part of an ftp
           from arizona.edu to lbl-rtsg.arpa over a CSNET connection that  doesn't
           appear to handle 576 byte datagrams:
                  arizona.ftp-data > rtsg.1170: . 1024:1332(308) ack 1 win 4096 (frag 595a:328@0+)
                  arizona > rtsg: (frag 595a:204@328)
                  rtsg.1170 > arizona.ftp-data: . ack 1536 win 2560
           There are a couple of things to note here:  First, addresses in the 2nd
           line don't include port numbers.  This  is  because  the  TCP  protocol
           information  is  all in the first fragment and we have no idea what the
           port or sequence numbers are when we print the later  fragments.   Sec‐
           ond,  the  tcp  sequence information in the first line is printed as if
           there were 308 bytes of user data when, in fact, there  are  512  bytes
           (308  in the first frag and 204 in the second).  If you are looking for
           holes in the sequence space or trying to match up  acks  with  packets,
           this can fool you.
    
           A  packet  with  the  IP  don't fragment flag is marked with a trailing
           (DF).
    
           Timestamps
    
           By default, all output lines are preceded by a  timestamp.   The  time‐
           stamp is the current clock time in the form
                  hh:mm:ss.frac
           and  is  as accurate as the kernel's clock.  The timestamp reflects the
           time the kernel applied a time stamp to the packet.  No attempt is made
           to account for the time lag between when the network interface finished
           receiving the packet from the network and when  the  kernel  applied  a
           time  stamp  to the packet; that time lag could include a delay between
           the time when the network interface finished receiving  a  packet  from
           the  network and the time when an interrupt was delivered to the kernel
           to get it to read the packet and a delay between the time when the ker‐
           nel  serviced the `new packet' interrupt and the time when it applied a
           time stamp to the packet.
    
    SEE ALSO
           stty(1),  pcap(3PCAP),  bpf(4),  nit(4P),  pcap-savefile(5),  pcap-fil‐
           ter(7), pcap-tstamp(7)
    
                  http://www.iana.org/assignments/media-types/application/vnd.tcp‐
                  dump.pcap
    
    AUTHORS
           The original authors are:
    
           Van Jacobson, Craig Leres and  Steven  McCanne,  all  of  the  Lawrence
           Berkeley National Laboratory, University of California, Berkeley, CA.
    
           It is currently being maintained by tcpdump.org.
    
           The current version is available via http:
    
                  http://www.tcpdump.org/
    
           The original distribution is available via anonymous ftp:
    
                  ftp://ftp.ee.lbl.gov/old/tcpdump.tar.Z
    
           IPv6/IPsec  support  is  added by WIDE/KAME project.  This program uses
           Eric Young's SSLeay library, under specific configurations.
    
    BUGS
           Please send problems, bugs, questions, desirable enhancements,  patches
           etc. to:
    
                  [email protected]
    
           NIT doesn't let you watch your own outbound traffic, BPF will.  We rec‐
           ommend that you use the latter.
    
           On Linux systems with 2.0[.x] kernels:
    
                  packets on the loopback device will be seen twice;
    
                  packet filtering cannot be done in the kernel, so that all pack‐
                  ets  must  be  copied from the kernel in order to be filtered in
                  user mode;
    
                  all of a packet, not just the part that's  within  the  snapshot
                  length,  will be copied from the kernel (the 2.0[.x] packet cap‐
                  ture mechanism, if asked to copy only part of a packet to  user‐
                  land,  will not report the true length of the packet; this would
                  cause most IP packets to get an error from tcpdump);
    
                  capturing on some PPP devices won't work correctly.
    
           We recommend that you upgrade to a 2.2 or later kernel.
    
           Some attempt should be made to reassemble IP fragments or, at least  to
           compute the right length for the higher level protocol.
    
           Name server inverse queries are not dumped correctly: the (empty) ques‐
           tion section is printed rather than real query in the  answer  section.
           Some  believe  that  inverse queries are themselves a bug and prefer to
           fix the program generating them rather than tcpdump.
    
           A packet trace that crosses a daylight savings time  change  will  give
           skewed time stamps (the time change is ignored).
    
           Filter  expressions  on  fields  other than those in Token Ring headers
           will not correctly handle source-routed Token Ring packets.
    
           Filter expressions on fields other than those in  802.11  headers  will
           not  correctly  handle  802.11 data packets with both To DS and From DS
           set.
    
           ip6 proto should chase header chain, but at this moment  it  does  not.
           ip6 protochain is supplied for this behavior.
    
           Arithmetic  expression  against  transport  layer headers, like tcp[0],
           does not work against IPv6 packets.  It only looks at IPv4 packets.
    
    
    
                                   17 September 2015                    TCPDUMP(8)
    

Log in to reply
 

© Lightnetics 2024