keytool(1) - Manages a keystore (database) of cryptographic keys, X.509 certificate chains, and trusted certificates.



  • keytool(1)			    Security Tools			    keytool(1)
    
    NAME
           keytool - Manages a keystore (database) of cryptographic keys, X.509
           certificate chains, and trusted certificates.
    
    SYNOPSIS
           keytool [commands]
    
           commands
    	      See Commands. These commands are categorized by task as follows:
    
    	      · Create or Add Data to the Keystore
    
    		· -gencert
    
    		· -genkeypair
    
    		· -genseckey
    
    		· -importcert
    
    		· -importpassword
    
    	      · Import Contents From Another Keystore
    
    		· -importkeystore
    
    	      · Generate Certificate Request
    
    		· -certreq
    
    	      · Export Data
    
    		· -exportcert
    
    	      · Display Data
    
    		· -list
    
    		· -printcert
    
    		· -printcertreq
    
    		· -printcrl
    
    	      · Manage the Keystore
    
    		· -storepasswd
    
    		· -keypasswd
    
    		· -delete
    
    		· -changealias
    
    	      · Get Help
    
    		· -help
    
    DESCRIPTION
           The keytool command is a key and certificate management utility. It enables
           users to administer their own public/private key pairs and associated
           certificates for use in self-authentication (where the user authenticates
           himself or herself to other users and services) or data integrity and
           authentication services, using digital signatures. The keytool command also
           enables users to cache the public keys (in the form of certificates) of their
           communicating peers.
    
           A certificate is a digitally signed statement from one entity (person, company,
           and so on.), that says that the public key (and some other information) of some
           other entity has a particular value. (See Certificate.) When data is digitally
           signed, the signature can be verified to check the data integrity and
           authenticity. Integrity means that the data has not been modified or tampered
           with, and authenticity means the data comes from whoever claims to have created
           and signed it.
    
           The keytool command also enables users to administer secret keys and
           passphrases used in symmetric encryption and decryption (DES).
    
           The keytool command stores the keys and certificates in a keystore. See
           KeyStore aliases.
    
    COMMAND AND OPTION NOTES
           See Commands for a listing and description of the various commands.
    
           · All command and option names are preceded by a minus sign (-).
    
           · The options for each command can be provided in any order.
    
           · All items not italicized or in braces or brackets are required to appear as
    	 is.
    
           · Braces surrounding an option signify that a default value will be used when
    	 the option is not specified on the command line. See Option Defaults. Braces
    	 are also used around the -v, -rfc, and -J options, which only have meaning
    	 when they appear on the command line. They do not have any default values
    	 other than not existing.
    
           · Brackets surrounding an option signify that the user is prompted for the
    	 values when the option is not specified on the command line. For the -keypass
    	 option, if you do not specify the option on the command line, then the
    	 keytool command first attempts to use the keystore password to recover the
    	 private/secret key. If this attempt fails, then the keytool command prompts
    	 you for the private/secret key password.
    
           · Items in italics (option values) represent the actual values that must be
    	 supplied. For example, here is the format of the -printcert command:
    
    	 keytool -printcert {-file cert_file} {-v}
    
    	 When you specify a -printcert command, replace cert_file with the actual file
    	 name, as follows: keytool -printcert -file VScert.cer
    
           · Option values must be put in quotation marks when they contain a blank
    	 (space).
    
           · The -help option is the default. The keytool command is the same as keytool
    	 -help.
    
    OPTION DEFAULTS
           The following examples show the defaults for various option values.
    
           -alias "mykey"
           -keyalg
    	   "DSA" (when using -genkeypair)
    	   "DES" (when using -genseckey)
           -keysize
    	   2048 (when using -genkeypair and -keyalg is "RSA")
    	   1024 (when using -genkeypair and -keyalg is "DSA")
    	   256 (when using -genkeypair and -keyalg is "EC")
    	   56 (when using -genseckey and -keyalg is "DES")
    	   168 (when using -genseckey and -keyalg is "DESede")
           -validity 90
           -keystore <the file named .keystore in the user's home directory>
           -storetype <the value of the "keystore.type" property in the
    	   security properties file, which is returned by the static
    	   getDefaultType method in java.security.KeyStore>
           -file
    	   stdin (if reading)
    	   stdout (if writing)
           -protected false
    
           In generating a public/private key pair, the signature algorithm (-sigalg
           option) is derived from the algorithm of the underlying private key:
    
           · If the underlying private key is of type DSA, then the -sigalg option
    	 defaults to SHA1withDSA.
    
           · If the underlying private key is of type RSA, then the -sigalg option
    	 defaults to SHA256withRSA.
    
           · If the underlying private key is of type EC, then the -sigalg option defaults
    	 to SHA256withECDSA.
    
           For a full list of -keyalg and -sigalg arguments, see Java Cryptography
           Architecture (JCA) Reference Guide at
           http://docs.oracle.com/javase/8/docs/technotes/guides/security/crypto/CryptoSpec.html#AppA
    
    COMMON OPTIONS
           The -v option can appear for all commands except -help. When the -v option
           appears, it signifies verbose mode, which means that more information is
           provided in the output.
    
           There is also a -Jjavaoption argument that can appear for any command. When the
           -Jjavaoption appears, the specified javaoption string is passed directly to the
           Java interpreter. This option does not contain any spaces. It is useful for
           adjusting the execution environment or memory usage. For a list of possible
           interpreter options, type java -h or java -X at the command line.
    
           These options can appear for all commands operating on a keystore:
    
           -storetype storetype
    	      This qualifier specifies the type of keystore to be instantiated.
    
           -keystore keystore
    	      The keystore location.
    
    	      If the JKS storetype is used and a keystore file does not yet exist,
    	      then certain keytool commands can result in a new keystore file being
    	      created. For example, if keytool -genkeypair is called and the -keystore
    	      option is not specified, the default keystore file named .keystore in
    	      the user's home directory is created when it does not already exist.
    	      Similarly, if the -keystore ks_file option is specified but ks_file does
    	      not exist, then it is created. For more information on the JKS
    	      storetype, see the KeyStore Implementation section in KeyStore aliases.
    
    	      Note that the input stream from the -keystore option is passed to the
    	      KeyStore.load method. If NONE is specified as the URL, then a null
    	      stream is passed to the KeyStore.load method. NONE should be specified
    	      if the keystore is not file-based. For example, when it resides on a
    	      hardware token device.
    
           -storepass[:env| :file] argument
    	      The password that is used to protect the integrity of the keystore.
    
    	      If the modifier env or file is not specified, then the password has the
    	      value argument, which must be at least 6 characters long. Otherwise, the
    	      password is retrieved as follows:
    
    	      · env: Retrieve the password from the environment variable named
    		argument.
    
    	      · file: Retrieve the password from the file named argument.
    
           Note: All other options that require passwords, such as -keypass, -srckeypass,
           -destkeypass, -srcstorepass, and -deststorepass, accept the env and file
           modifiers. Remember to separate the password option and the modifier with a
           colon (:).
    
           The password must be provided to all commands that access the keystore
           contents. For such commands, when the -storepass option is not provided at the
           command line, the user is prompted for it.
    
           When retrieving information from the keystore, the password is optional. If no
           password is specified, then the integrity of the retrieved information cannot
           be verified and a warning is displayed.
    
           -providerName provider_name
    	      Used to identify a cryptographic service provider's name when listed in
    	      the security properties file.
    
           -providerClass provider_class_name
    	      Used to specify the name of a cryptographic service provider's master
    	      class file when the service provider is not listed in the security
    	      properties file.
    
           -providerArg provider_arg
    	      Used with the -providerClass option to represent an optional string
    	      input argument for the constructor of provider_class_name.
    
           -protected
    	      Either true or false. This value should be specified as true when a
    	      password must be specified by way of a protected authentication path
    	      such as a dedicated PIN reader.Because there are two keystores involved
    	      in the -importkeystore command, the following two options -srcprotected
    	      and -destprotected are provided for the source keystore and the
    	      destination keystore respectively.
    
           -ext {name{:critical} {=value}}
    	      Denotes an X.509 certificate extension. The option can be used in
    	      -genkeypair and -gencert to embed extensions into the certificate
    	      generated, or in -certreq to show what extensions are requested in the
    	      certificate request. The option can appear multiple times. The name
    	      argument can be a supported extension name (see Named Extensions) or an
    	      arbitrary OID number. The value argument, when provided, denotes the
    	      argument for the extension. When value is omitted, that means that the
    	      default value of the extension or the extension requires no argument.
    	      The :critical modifier, when provided, means the extension's isCritical
    	      attribute is true; otherwise, it is false. You can use :c in place of
    	      :critical.
    
    NAMED EXTENSIONS
           The keytool command supports these named extensions. The names are not case-
           sensitive).
    
           BC or BasicContraints
    	      Values: The full form is: ca:{true|false}[,pathlen:<len>] or <len>,
    	      which is short for ca:true,pathlen:<len>. When <len> is omitted, you
    	      have ca:true.
    
           KU or KeyUsage
    	      Values: usage(,usage)*, where usage can be one of digitalSignature,
    	      nonRepudiation (contentCommitment), keyEncipherment, dataEncipherment,
    	      keyAgreement, keyCertSign, cRLSign, encipherOnly, decipherOnly. The
    	      usage argument can be abbreviated with the first few letters (dig for
    	      digitalSignature) or in camel-case style (dS for digitalSignature or
    	      cRLS for cRLSign), as long as no ambiguity is found. The usage values
    	      are case-sensitive.
    
           EKU or ExtendedKeyUsage
    	      Values: usage(,usage)*, where usage can be one of anyExtendedKeyUsage,
    	      serverAuth, clientAuth, codeSigning, emailProtection, timeStamping,
    	      OCSPSigning, or any OID string. The usage argument can be abbreviated
    	      with the first few letters or in camel-case style, as long as no
    	      ambiguity is found. The usage values are case-sensitive.
    
           SAN or SubjectAlternativeName
    	      Values: type:value(,type:value)*, where type can be EMAIL, URI, DNS, IP,
    	      or OID. The value argument is the string format value for the type.
    
           IAN or IssuerAlternativeName
    	      Values: Same as SubjectAlternativeName.
    
           SIA or SubjectInfoAccess
    	      Values: method:location-type:location-value (,method:location-
    	      type:location-value)*, where method can be timeStamping, caRepository or
    	      any OID. The location-type and location-value arguments can be any
    	      type:value supported by the SubjectAlternativeName extension.
    
           AIA or AuthorityInfoAccess
    	      Values: Same as SubjectInfoAccess. The method argument can be
    	      ocsp,caIssuers, or any OID.
    
           When name is OID, the value is the hexadecimal dumped DER encoding of the
           extnValue for the extension excluding the OCTET STRING type and length bytes.
           Any extra character other than standard hexadecimal numbers (0-9, a-f, A-F) are
           ignored in the HEX string. Therefore, both 01:02:03:04 and 01020304 are
           accepted as identical values. When there is no value, the extension has an
           empty value field.
    
           A special name honored, used in -gencert only, denotes how the extensions
           included in the certificate request should be honored. The value for this name
           is a comma separated list of all (all requested extensions are honored),
           name{:[critical|non-critical]} (the named extension is honored, but using a
           different isCritical attribute) and -name (used with all, denotes an
           exception). Requested extensions are not honored by default.
    
           If, besides the-ext honored option, another named or OID -ext option is
           provided, this extension is added to those already honored. However, if this
           name (or OID) also appears in the honored value, then its value and criticality
           overrides the one in the request.
    
           The subjectKeyIdentifier extension is always created. For non-self-signed
           certificates, the authorityKeyIdentifier is created.
    
           Note: Users should be aware that some combinations of extensions (and other
           certificate fields) may not conform to the Internet standard. See Certificate
           Conformance Warning.
    
    COMMANDS
           -gencert
    
    	      {-rfc} {-infile infile} {-outfile outfile} {-alias alias} {-sigalg sigalg}
    
    	      {-dname dname} {-startdate startdate {-ext ext}* {-validity valDays}
    
    	      [-keypass keypass] {-keystore keystore} [-storepass storepass]
    
    	      {-storetype storetype} {-providername provider_name}
    
    	      {-providerClass provider_class_name {-providerArg provider_arg}}
    
    	      {-v} {-protected} {-Jjavaoption}
    
    	      Generates a certificate as a response to a certificate request file
    	      (which can be created by the keytool-certreq command). The command reads
    	      the request from infile (if omitted, from the standard input), signs it
    	      using alias's private key, and outputs the X.509 certificate into
    	      outfile (if omitted, to the standard output). When-rfc is specified, the
    	      output format is Base64-encoded PEM; otherwise, a binary DER is created.
    
    	      The sigalg value specifies the algorithm that should be used to sign the
    	      certificate. The startdate argument is the start time and date that the
    	      certificate is valid. The valDays argument tells the number of days for
    	      which the certificate should be considered valid.
    
    	      When dname is provided, it is used as the subject of the generated
    	      certificate. Otherwise, the one from the certificate request is used.
    
    	      The ext value shows what X.509 extensions will be embedded in the
    	      certificate. Read Common Options for the grammar of -ext.
    
    	      The -gencert option enables you to create certificate chains. The
    	      following example creates a certificate, e1, that contains three
    	      certificates in its certificate chain.
    
    	      The following commands creates four key pairs named ca, ca1, ca2, and
    	      e1:
    
    	      keytool -alias ca -dname CN=CA -genkeypair
    	      keytool -alias ca1 -dname CN=CA -genkeypair
    	      keytool -alias ca2 -dname CN=CA -genkeypair
    	      keytool -alias e1 -dname CN=E1 -genkeypair
    
    	      The following two commands create a chain of signed certificates; ca
    	      signs ca1 and ca1 signs ca2, all of which are self-issued:
    
    	      keytool -alias ca1 -certreq |
    		  keytool -alias ca -gencert -ext san=dns:ca1 |
    		  keytool -alias ca1 -importcert
    	      keytool -alias ca2 -certreq |
    		  $KT -alias ca1 -gencert -ext san=dns:ca2 |
    		  $KT -alias ca2 -importcert
    
    	      The following command creates the certificate e1 and stores it in the
    	      file e1.cert, which is signed by ca2. As a result, e1 should contain ca,
    	      ca1, and ca2 in its certificate chain:
    
    	      keytool -alias e1 -certreq | keytool -alias ca2 -gencert > e1.cert
    
           -genkeypair
    
    	      {-alias alias} {-keyalg keyalg} {-keysize keysize} {-sigalg sigalg}
    
    	      [-dname dname] [-keypass keypass] {-startdate value} {-ext ext}*
    
    	      {-validity valDays} {-storetype storetype} {-keystore keystore}
    
    	      [-storepass storepass]
    
    	      {-providerClass provider_class_name {-providerArg provider_arg}}
    
    	      {-v} {-protected} {-Jjavaoption}
    
    	      Generates a key pair (a public key and associated private key). Wraps
    	      the public key into an X.509 v3 self-signed certificate, which is stored
    	      as a single-element certificate chain. This certificate chain and the
    	      private key are stored in a new keystore entry identified by alias.
    
    	      The keyalg value specifies the algorithm to be used to generate the key
    	      pair, and the keysize value specifies the size of each key to be
    	      generated. The sigalg value specifies the algorithm that should be used
    	      to sign the self-signed certificate. This algorithm must be compatible
    	      with the keyalg value.
    
    	      The dname value specifies the X.500 Distinguished Name to be associated
    	      with the value of alias, and is used as the issuer and subject fields in
    	      the self-signed certificate. If no distinguished name is provided at the
    	      command line, then the user is prompted for one.
    
    	      The value of keypass is a password used to protect the private key of
    	      the generated key pair. If no password is provided, then the user is
    	      prompted for it. If you press the Return key at the prompt, then the key
    	      password is set to the same password as the keystore password. The
    	      keypass value must be at least 6 characters.
    
    	      The value of startdate specifies the issue time of the certificate, also
    	      known as the "Not Before" value of the X.509 certificate's Validity
    	      field.
    
    	      The option value can be set in one of these two forms:
    
    	      ([+-]nnn[ymdHMS])+
    
    	      [yyyy/mm/dd] [HH:MM:SS]
    
    	      With the first form, the issue time is shifted by the specified value
    	      from the current time. The value is a concatenation of a sequence of
    	      subvalues. Inside each subvalue, the plus sign (+) means shift forward,
    	      and the minus sign (-) means shift backward. The time to be shifted is
    	      nnn units of years, months, days, hours, minutes, or seconds (denoted by
    	      a single character of y, m, d, H, M, or S respectively). The exact value
    	      of the issue time is calculated using the
    	      java.util.GregorianCalendar.add(int field, int amount) method on each
    	      subvalue, from left to right. For example, by specifying, the issue time
    	      will be:
    
    	      Calendar c = new GregorianCalendar();
    	      c.add(Calendar.YEAR, -1);
    	      c.add(Calendar.MONTH, 1);
    	      c.add(Calendar.DATE, -1);
    	      return c.getTime()
    
    	      With the second form, the user sets the exact issue time in two parts,
    	      year/month/day and hour:minute:second (using the local time zone). The
    	      user can provide only one part, which means the other part is the same
    	      as the current date (or time). The user must provide the exact number of
    	      digits as shown in the format definition (padding with 0 when shorter).
    	      When both the date and time are provided, there is one (and only one)
    	      space character between the two parts. The hour should always be
    	      provided in 24 hour format.
    
    	      When the option is not provided, the start date is the current time. The
    	      option can be provided at most once.
    
    	      The value of valDays specifies the number of days (starting at the date
    	      specified by -startdate, or the current date when -startdate is not
    	      specified) for which the certificate should be considered valid.
    
    	      This command was named -genkey in earlier releases. The old name is
    	      still supported in this release. The new name, -genkeypair, is preferred
    	      going forward.
    
           -genseckey
    
    	      {-alias alias} {-keyalg keyalg} {-keysize keysize} [-keypass keypass]
    
    	      {-storetype storetype} {-keystore keystore} [-storepass storepass]
    
    	      {-providerClass provider_class_name {-providerArg provider_arg}} {-v}
    
    	      {-protected} {-Jjavaoption}
    
    	      Generates a secret key and stores it in a new KeyStore.SecretKeyEntry
    	      identified by alias.
    
    	      The value of keyalg specifies the algorithm to be used to generate the
    	      secret key, and the value of keysize specifies the size of the key to be
    	      generated. The keypass value is a password that protects the secret key.
    	      If no password is provided, then the user is prompted for it. If you
    	      press the Return key at the prompt, then the key password is set to the
    	      same password that is used for the keystore. The keypass value must be
    	      at least 6 characters.
    
           -importcert
    
    	      {-alias alias} {-file cert_file} [-keypass keypass] {-noprompt} {-trustcacerts}
    
    	      {-storetype storetype} {-keystore keystore} [-storepass storepass]
    
    	      {-providerName provider_name}
    
    	      {-providerClass provider_class_name {-providerArg provider_arg}}
    
    	      {-v} {-protected} {-Jjavaoption}
    
    	      Reads the certificate or certificate chain (where the latter is supplied
    	      in a PKCS#7 formatted reply or a sequence of X.509 certificates) from
    	      the file cert_file, and stores it in the keystore entry identified by
    	      alias. If no file is specified, then the certificate or certificate
    	      chain is read from stdin.
    
    	      The keytool command can import X.509 v1, v2, and v3 certificates, and
    	      PKCS#7 formatted certificate chains consisting of certificates of that
    	      type. The data to be imported must be provided either in binary encoding
    	      format or in printable encoding format (also known as Base64 encoding)
    	      as defined by the Internet RFC 1421 standard. In the latter case, the
    	      encoding must be bounded at the beginning by a string that starts with
    	      -----BEGIN, and bounded at the end by a string that starts with
    	      -----END.
    
    	      You import a certificate for two reasons: To add it to the list of
    	      trusted certificates, and to import a certificate reply received from a
    	      certificate authority (CA) as the result of submitting a Certificate
    	      Signing Request to that CA (see the -certreq option in Commands).
    
    	      Which type of import is intended is indicated by the value of the -alias
    	      option. If the alias does not point to a key entry, then the keytool
    	      command assumes you are adding a trusted certificate entry. In this
    	      case, the alias should not already exist in the keystore. If the alias
    	      does already exist, then the keytool command outputs an error because
    	      there is already a trusted certificate for that alias, and does not
    	      import the certificate. If the alias points to a key entry, then the
    	      keytool command assumes you are importing a certificate reply.
    
           -importpassword
    
    	      {-alias alias} [-keypass keypass] {-storetype storetype} {-keystore keystore}
    
    	      [-storepass storepass]
    
    	      {-providerClass provider_class_name {-providerArg provider_arg}}
    
    	      {-v} {-protected} {-Jjavaoption}
    
    	      Imports a passphrase and stores it in a new KeyStore.SecretKeyEntry
    	      identified by alias. The passphrase may be supplied via the standard
    	      input stream; otherwise the user is prompted for it. keypass is a
    	      password used to protect the imported passphrase. If no password is
    	      provided, the user is prompted for it. If you press the Return key at
    	      the prompt, the key password is set to the same password as that used
    	      for the keystore. keypass must be at least 6 characters long.
    
           -importkeystore
    
    	      {-srcstoretype srcstoretype} {-deststoretype deststoretype}
    
    	      [-srcstorepass srcstorepass] [-deststorepass deststorepass] {-srcprotected}
    
    	      {-destprotected}
    
    	      {-srcalias srcalias {-destalias destalias} [-srckeypass srckeypass]}
    
    	      [-destkeypass destkeypass] {-noprompt}
    
    	      {-srcProviderName src_provider_name} {-destProviderName dest_provider_name}
    
    	      {-providerClass provider_class_name {-providerArg provider_arg}} {-v}
    
    	      {-protected} {-Jjavaoption}
    
    	      Imports a single entry or all entries from a source keystore to a
    	      destination keystore.
    
    	      When the -srcalias option is provided, the command imports the single
    	      entry identified by the alias to the destination keystore. If a
    	      destination alias is not provided with destalias, then srcalias is used
    	      as the destination alias. If the source entry is protected by a
    	      password, then srckeypass is used to recover the entry. If srckeypass is
    	      not provided, then the keytool command attempts to use srcstorepass to
    	      recover the entry. If srcstorepass is either not provided or is
    	      incorrect, then the user is prompted for a password. The destination
    	      entry is protected with destkeypass. If destkeypass is not provided,
    	      then the destination entry is protected with the source entry password.
    	      For example, most third-party tools require storepass and keypass in a
    	      PKCS #12 keystore to be the same. In order to create a PKCS #12 keystore
    	      for these tools, always specify a -destkeypass to be the same as
    	      -deststorepass.
    
    	      If the -srcalias option is not provided, then all entries in the source
    	      keystore are imported into the destination keystore. Each destination
    	      entry is stored under the alias from the source entry. If the source
    	      entry is protected by a password, then srcstorepass is used to recover
    	      the entry. If srcstorepass is either not provided or is incorrect, then
    	      the user is prompted for a password. If a source keystore entry type is
    	      not supported in the destination keystore, or if an error occurs while
    	      storing an entry into the destination keystore, then the user is
    	      prompted whether to skip the entry and continue or to quit. The
    	      destination entry is protected with the source entry password.
    
    	      If the destination alias already exists in the destination keystore,
    	      then the user is prompted to either overwrite the entry or to create a
    	      new entry under a different alias name.
    
    	      If the -noprompt option is provided, then the user is not prompted for a
    	      new destination alias. Existing entries are overwritten with the
    	      destination alias name. Entries that cannot be imported are skipped and
    	      a warning is displayed.
    
           -printcertreq
    
    	      {-file file}
    
    	      Prints the content of a PKCS #10 format certificate request, which can
    	      be generated by the keytool-certreq command. The command reads the
    	      request from file. If there is no file, then the request is read from
    	      the standard input.
    
           -certreq
    
    	      {-alias alias} {-dname dname} {-sigalg sigalg} {-file certreq_file}
    
    	      [-keypass keypass] {-storetype storetype} {-keystore keystore}
    
    	      [-storepass storepass] {-providerName provider_name}
    
    	      {-providerClass provider_class_name {-providerArg provider_arg}}
    
    	      {-v} {-protected} {-Jjavaoption}
    
    	      Generates a Certificate Signing Request (CSR) using the PKCS #10 format.
    
    	      A CSR is intended to be sent to a certificate authority (CA). The CA
    	      authenticates the certificate requestor (usually off-line) and will
    	      return a certificate or certificate chain, used to replace the existing
    	      certificate chain (which initially consists of a self-signed
    	      certificate) in the keystore.
    
    	      The private key associated with alias is used to create the PKCS #10
    	      certificate request. To access the private key, the correct password
    	      must be provided. If keypass is not provided at the command line and is
    	      different from the password used to protect the integrity of the
    	      keystore, then the user is prompted for it. If dname is provided, then
    	      it is used as the subject in the CSR. Otherwise, the X.500 Distinguished
    	      Name associated with alias is used.
    
    	      The sigalg value specifies the algorithm that should be used to sign the
    	      CSR.
    
    	      The CSR is stored in the file certreq_file. If no file is specified,
    	      then the CSR is output to stdout.
    
    	      Use the importcert command to import the response from the CA.
    
           -exportcert
    
    	      {-alias alias} {-file cert_file} {-storetype storetype} {-keystore keystore}
    
    	      [-storepass storepass] {-providerName provider_name}
    
    	      {-providerClass provider_class_name {-providerArg provider_arg}}
    
    	      {-rfc} {-v} {-protected} {-Jjavaoption}
    
    	      Reads from the keystore the certificate associated with alias and stores
    	      it in the cert_file file. When no file is specified, the certificate is
    	      output to stdout.
    
    	      The certificate is by default output in binary encoding. If the -rfc
    	      option is specified, then the output in the printable encoding format
    	      defined by the Internet RFC 1421 Certificate Encoding Standard.
    
    	      If alias refers to a trusted certificate, then that certificate is
    	      output. Otherwise, alias refers to a key entry with an associated
    	      certificate chain. In that case, the first certificate in the chain is
    	      returned. This certificate authenticates the public key of the entity
    	      addressed by alias.
    
    	      This command was named -export in earlier releases. The old name is
    	      still supported in this release. The new name, -exportcert, is preferred
    	      going forward.
    
           -list
    
    	      {-alias alias} {-storetype storetype} {-keystore keystore} [-storepass storepass]
    
    	      {-providerName provider_name}
    
    	      {-providerClass provider_class_name {-providerArg provider_arg}}
    
    	      {-v | -rfc} {-protected} {-Jjavaoption}
    
    	      Prints to stdout the contents of the keystore entry identified by alias.
    	      If no alias is specified, then the contents of the entire keystore are
    	      printed.
    
    	      This command by default prints the SHA1 fingerprint of a certificate. If
    	      the -v option is specified, then the certificate is printed in human-
    	      readable format, with additional information such as the owner, issuer,
    	      serial number, and any extensions. If the -rfc option is specified, then
    	      the certificate contents are printed using the printable encoding
    	      format, as defined by the Internet RFC 1421 Certificate Encoding
    	      Standard.
    
    	      You cannot specify both -v and -rfc.
    
           -printcert
    
    	      {-file cert_file | -sslserver host[:port]} {-jarfile JAR_file {-rfc} {-v}
    
    	      {-Jjavaoption}
    
    	      Reads the certificate from the file cert_file, the SSL server located at
    	      host:port, or the signed JAR file JAR_file (with the -jarfile option and
    	      prints its contents in a human-readable format. When no port is
    	      specified, the standard HTTPS port 443 is assumed. Note that -sslserver
    	      and -file options cannot be provided at the same time. Otherwise, an
    	      error is reported. If neither option is specified, then the certificate
    	      is read from stdin.
    
    	      When-rfc is specified, the keytool command prints the certificate in PEM
    	      mode as defined by the Internet RFC 1421 Certificate Encoding standard.
    	      See Internet RFC 1421 Certificate Encoding Standard.
    
    	      If the certificate is read from a file or stdin, then it might be either
    	      binary encoded or in printable encoding format, as defined by the RFC
    	      1421 Certificate Encoding standard.
    
    	      If the SSL server is behind a firewall, then the -J-
    	      Dhttps.proxyHost=proxyhost and -J-Dhttps.proxyPort=proxyport options can
    	      be specified on the command line for proxy tunneling. See Java Secure
    	      Socket Extension (JSSE) Reference Guide at
    	      http://docs.oracle.com/javase/8/docs/technotes/guides/security/jsse/JSSERefGuide.html
    
    	      Note: This option can be used independently of a keystore.
    
           -printcrl
    
    	      -file crl_ {-v}
    
    	      Reads the Certificate Revocation List (CRL) from the file crl_. A CRL is
    	      a list of digital certificates that were revoked by the CA that issued
    	      them. The CA generates the crl_ file.
    
    	      Note: This option can be used independently of a keystore.
    
           -storepasswd
    
    	      [-new new_storepass] {-storetype storetype} {-keystore keystore}
    
    	      [-storepass storepass] {-providerName provider_name}
    
    	      {-providerClass provider_class_name {-providerArg provider_arg}}
    
    	      {-v} {-Jjavaoption}
    
    	      Changes the password used to protect the integrity of the keystore
    	      contents. The new password is new_storepass, which must be at least 6
    	      characters.
    
           -keypasswd
    
    	      {-alias alias} [-keypass old_keypass] [-new new_keypass] {-storetype storetype}
    
    	      {-keystore keystore} [-storepass storepass] {-providerName provider_name}
    
    	      {-providerClass provider_class_name {-providerArg provider_arg}} {-v}
    
    	      {-Jjavaoption}
    
    	      Changes the password under which the private/secret key identified by
    	      alias is protected, from old_keypass to new_keypass, which must be at
    	      least 6 characters.
    
    	      If the -keypass option is not provided at the command line, and the key
    	      password is different from the keystore password, then the user is
    	      prompted for it.
    
    	      If the -new option is not provided at the command line, then the user is
    	      prompted for it
    
           -delete
    
    	      [-alias alias] {-storetype storetype} {-keystore keystore} [-storepass storepass]
    
    	      {-providerName provider_name}
    
    	      {-providerClass provider_class_name {-providerArg provider_arg}}
    
    	      {-v} {-protected} {-Jjavaoption}
    
    	      Deletes from the keystore the entry identified by alias. The user is
    	      prompted for the alias, when no alias is provided at the command line.
    
           -changealias
    
    	      {-alias alias} [-destalias destalias] [-keypass keypass] {-storetype storetype}
    
    	      {-keystore keystore} [-storepass storepass] {-providerName provider_name}
    
    	      {-providerClass provider_class_name {-providerArg provider_arg}} {-v}
    
    	      {-protected} {-Jjavaoption}
    
    	      Move an existing keystore entry from the specified alias to a new alias,
    	      destalias. If no destination alias is provided, then the command prompts
    	      for one. If the original entry is protected with an entry password, then
    	      the password can be supplied with the -keypass option. If no key
    	      password is provided, then the storepass (if provided) is attempted
    	      first. If the attempt fails, then the user is prompted for a password.
    
           -help
    	      Lists the basic commands and their options.
    
    	      For more information about a specific command, enter the following,
    	      where command_name is the name of the command: keytool -command_name
    	      -help.
    
    EXAMPLES
           This example walks through the sequence of steps to create a keystore for
           managing public/private key pair and certificates from trusted entities.
    
       GENERATE THE KEY PAIR
           First, create a keystore and generate the key pair. You can use a command such
           as the following typed as a single line:
    
           keytool -genkeypair -dname "cn=Mark Jones, ou=Java, o=Oracle, c=US"
    	   -alias business -keypass <new password for private key>
    	   -keystore /working/mykeystore
    	   -storepass <new password for keystore> -validity 180
    
           The command creates the keystore named mykeystore in the working directory
           (assuming it does not already exist), and assigns it the password specified by
           <new password for keystore>. It generates a public/private key pair for the
           entity whose distinguished name has a common name of Mark Jones, organizational
           unit of Java, organization of Oracle and two-letter country code of US. It uses
           the default DSA key generation algorithm to create the keys; both are 1024
           bits.
    
           The command uses the default SHA1withDSA signature algorithm to create a self-
           signed certificate that includes the public key and the distinguished name
           information. The certificate is valid for 180 days, and is associated with the
           private key in a keystore entry referred to by the alias business. The private
           key is assigned the password specified by <new password for private key>.
    
           The command is significantly shorter when the option defaults are accepted. In
           this case, no options are required, and the defaults are used for unspecified
           options that have default values. You are prompted for any required values. You
           could have the following:
    
           keytool -genkeypair
    
           In this case, a keystore entry with the alias mykey is created, with a newly
           generated key pair and a certificate that is valid for 90 days. This entry is
           placed in the keystore named .keystore in your home directory. The keystore is
           created when it does not already exist. You are prompted for the distinguished
           name information, the keystore password, and the private key password.
    
           The rest of the examples assume you executed the -genkeypair command without
           options specified, and that you responded to the prompts with values equal to
           those specified in the first -genkeypair command. For example, a distinguished
           name of cn=Mark Jones, ou=Java, o=Oracle, c=US).
    
       REQUEST A SIGNED CERTIFICATE FROM A CA
           Generating the key pair created a self-signed certificate. A certificate is
           more likely to be trusted by others when it is signed by a Certification
           Authority (CA). To get a CA signature, first generate a Certificate Signing
           Request (CSR), as follows:
    
           keytool -certreq -file MarkJ.csr
    
           This creates a CSR for the entity identified by the default alias mykey and
           puts the request in the file named MarkJ.csr. Submit this file to a CA, such as
           VeriSign. The CA authenticates you, the requestor (usually off-line), and
           returns a certificate, signed by them, authenticating your public key. In some
           cases, the CA returns a chain of certificates, each one authenticating the
           public key of the signer of the previous certificate in the chain.
    
       IMPORT A CERTIFICATE FOR THE CA
           You now need to replace the self-signed certificate with a certificate chain,
           where each certificate in the chain authenticates the public key of the signer
           of the previous certificate in the chain, up to a root CA.
    
           Before you import the certificate reply from a CA, you need one or more trusted
           certificates in your keystore or in the cacerts keystore file. See -importcert
           in Commands.
    
           · If the certificate reply is a certificate chain, then you need the top
    	 certificate of the chain. The root CA certificate that authenticates the
    	 public key of the CA.
    
           · If the certificate reply is a single certificate, then you need a certificate
    	 for the issuing CA (the one that signed it). If that certificate is not self-
    	 signed, then you need a certificate for its signer, and so on, up to a self-
    	 signed root CA certificate.
    
           The cacerts keystore file ships with several VeriSign root CA certificates, so
           you probably will not need to import a VeriSign certificate as a trusted
           certificate in your keystore. But if you request a signed certificate from a
           different CA, and a certificate authenticating that CA's public key was not
           added to cacerts, then you must import a certificate from the CA as a trusted
           certificate.
    
           A certificate from a CA is usually either self-signed or signed by another CA,
           in which case you need a certificate that authenticates that CA's public key.
           Suppose company ABC, Inc., is a CA, and you obtain a file named ABCCA.cer that
           is supposed to be a self-signed certificate from ABC, that authenticates that
           CA's public key. Be careful to ensure the certificate is valid before you
           import it as a trusted certificate. View it first with the keytool -printcert
           command or the keytool -importcert command without the -noprompt option, and
           make sure that the displayed certificate fingerprints match the expected ones.
           You can call the person who sent the certificate, and compare the fingerprints
           that you see with the ones that they show or that a secure public key
           repository shows. Only when the fingerprints are equal is it guaranteed that
           the certificate was not replaced in transit with somebody else's (for example,
           an attacker's) certificate. If such an attack takes place, and you did not
           check the certificate before you imported it, then you would be trusting
           anything the attacker has signed.
    
           If you trust that the certificate is valid, then you can add it to your
           keystore with the following command:
    
           keytool -importcert -alias abc -file ABCCA.cer
    
           This command creates a trusted certificate entry in the keystore, with the data
           from the file ABCCA.cer, and assigns the alias abc to the entry.
    
       IMPORT THE CERTIFICATE REPLY FROM THE CA
           After you import a certificate that authenticates the public key of the CA you
           submitted your certificate signing request to (or there is already such a
           certificate in the cacerts file), you can import the certificate reply and
           replace your self-signed certificate with a certificate chain. This chain is
           the one returned by the CA in response to your request (when the CA reply is a
           chain), or one constructed (when the CA reply is a single certificate) using
           the certificate reply and trusted certificates that are already available in
           the keystore where you import the reply or in the cacerts keystore file.
    
           For example, if you sent your certificate signing request to VeriSign, then you
           can import the reply with the following, which assumes the returned certificate
           is named VSMarkJ.cer:
    
           keytool -importcert -trustcacerts -file VSMarkJ.cer
    
       EXPORT A CERTIFICATE THAT AUTHENTICATES THE PUBLIC KEY
           If you used the jarsigner command to sign a Java Archive (JAR) file, then
           clients that want to use the file will want to authenticate your signature. One
           way the clients can authenticate you is by first importing your public key
           certificate into their keystore as a trusted entry.
    
           You can export the certificate and supply it to your clients. As an example,
           you can copy your certificate to a file named MJ.cer with the following command
           that assumes the entry has an alias of mykey:
    
           keytool -exportcert -alias mykey -file MJ.cer
    
           With the certificate and the signed JAR file, a client can use the jarsigner
           command to authenticate your signature.
    
       IMPORT KEYSTORE
           The command importkeystore is used to import an entire keystore into another
           keystore, which means all entries from the source keystore, including keys and
           certificates, are all imported to the destination keystore within a single
           command. You can use this command to import entries from a different type of
           keystore. During the import, all new entries in the destination keystore will
           have the same alias names and protection passwords (for secret keys and private
           keys). If the keytool command cannot recover the private keys or secret keys
           from the source keystore, then it prompts you for a password. If it detects
           alias duplication, then it asks you for a new alias, and you can specify a new
           alias or simply allow the keytool command to overwrite the existing one.
    
           For example, to import entries from a typical JKS type keystore key.jks into a
           PKCS #11 type hardware-based keystore, use the command:
    
           keytool -importkeystore
    	   -srckeystore key.jks -destkeystore NONE
    	   -srcstoretype JKS -deststoretype PKCS11
    	   -srcstorepass <src keystore password>
    	   -deststorepass <destination keystore pwd>
    
           The importkeystore command can also be used to import a single entry from a
           source keystore to a destination keystore. In this case, besides the options
           you see in the previous example, you need to specify the alias you want to
           import. With the -srcalias option specified, you can also specify the
           destination alias name in the command line, as well as protection password for
           a secret/private key and the destination protection password you want. The
           following command demonstrates this:
    
           keytool -importkeystore
    	   -srckeystore key.jks -destkeystore NONE
    	   -srcstoretype JKS -deststoretype PKCS11
    	   -srcstorepass <src keystore password>
    	   -deststorepass <destination keystore pwd>
    	   -srcalias myprivatekey -destalias myoldprivatekey
    	   -srckeypass <source entry password>
    	   -destkeypass <destination entry password>
    	   -noprompt
    
       GENERATE CERTIFICATES FOR AN SSL SERVER
           The following are keytool commands to generate key pairs and certificates for
           three entities: Root CA (root), Intermediate CA (ca), and SSL server (server).
           Ensure that you store all the certificates in the same keystore. In these
           examples, RSA is the recommended the key algorithm.
    
           keytool -genkeypair -keystore root.jks -alias root -ext bc:c
           keytool -genkeypair -keystore ca.jks -alias ca -ext bc:c
           keytool -genkeypair -keystore server.jks -alias server
           keytool -keystore root.jks -alias root -exportcert -rfc > root.pem
           keytool -storepass <storepass> -keystore ca.jks -certreq -alias ca |
    	   keytool -storepass <storepass> -keystore root.jks
    	   -gencert -alias root -ext BC=0 -rfc > ca.pem
           keytool -keystore ca.jks -importcert -alias ca -file ca.pem
           keytool -storepass <storepass> -keystore server.jks -certreq -alias server |
    	   keytool -storepass <storepass> -keystore ca.jks -gencert -alias ca
    	   -ext ku:c=dig,kE -rfc > server.pem
           cat root.pem ca.pem server.pem |
    	   keytool -keystore server.jks -importcert -alias server
    
    TERMS
           Keystore
    	      A keystore is a storage facility for cryptographic keys and
    	      certificates.
    
           Keystore entries
    	      Keystores can have different types of entries. The two most applicable
    	      entry types for the keytool command include the following:
    
    	      Key entries: Each entry holds very sensitive cryptographic key
    	      information, which is stored in a protected format to prevent
    	      unauthorized access. Typically, a key stored in this type of entry is a
    	      secret key, or a private key accompanied by the certificate chain for
    	      the corresponding public key. See Certificate Chains. The keytool
    	      command can handle both types of entries, while the jarsigner tool only
    	      handles the latter type of entry, that is private keys and their
    	      associated certificate chains.
    
    	      Trusted certificate entries: Each entry contains a single public key
    	      certificate that belongs to another party. The entry is called a trusted
    	      certificate because the keystore owner trusts that the public key in the
    	      certificate belongs to the identity identified by the subject (owner) of
    	      the certificate. The issuer of the certificate vouches for this, by
    	      signing the certificate.
    
           KeyStore aliases
    	      All keystore entries (key and trusted certificate entries) are accessed
    	      by way of unique aliases.
    
    	      An alias is specified when you add an entity to the keystore with the
    	      -genseckey command to generate a secret key, the -genkeypair command to
    	      generate a key pair (public and private key), or the -importcert command
    	      to add a certificate or certificate chain to the list of trusted
    	      certificates. Subsequent keytool commands must use this same alias to
    	      refer to the entity.
    
    	      For example, you can use the alias duke to generate a new public/private
    	      key pair and wrap the public key into a self-signed certificate with the
    	      following command. See Certificate Chains.
    
    	      keytool -genkeypair -alias duke -keypass dukekeypasswd
    
    	      This example specifies an initial password of dukekeypasswd required by
    	      subsequent commands to access the private key associated with the alias
    	      duke. If you later want to change Duke's private key password, use a
    	      command such as the following:
    
    	      keytool -keypasswd -alias duke -keypass dukekeypasswd -new newpass
    
    	      This changes the password from dukekeypasswd to newpass. A password
    	      should not be specified on a command line or in a script unless it is
    	      for testing purposes, or you are on a secure system. If you do not
    	      specify a required password option on a command line, then you are
    	      prompted for it.
    
           KeyStore implementation
    	      The KeyStore class provided in the java.security package supplies well-
    	      defined interfaces to access and modify the information in a keystore.
    	      It is possible for there to be multiple different concrete
    	      implementations, where each implementation is that for a particular type
    	      of keystore.
    
    	      Currently, two command-line tools (keytool and jarsigner) and a GUI-
    	      based tool named Policy Tool make use of keystore implementations.
    	      Because the KeyStore class is public, users can write additional
    	      security applications that use it.
    
    	      There is a built-in default implementation, provided by Oracle. It
    	      implements the keystore as a file with a proprietary keystore type
    	      (format) named JKS. It protects each private key with its individual
    	      password, and also protects the integrity of the entire keystore with a
    	      (possibly different) password.
    
    	      Keystore implementations are provider-based. More specifically, the
    	      application interfaces supplied by KeyStore are implemented in terms of
    	      a Service Provider Interface (SPI). That is, there is a corresponding
    	      abstract KeystoreSpi class, also in the java.security package, which
    	      defines the Service Provider Interface methods that providers must
    	      implement. The term provider refers to a package or a set of packages
    	      that supply a concrete implementation of a subset of services that can
    	      be accessed by the Java Security API. To provide a keystore
    	      implementation, clients must implement a provider and supply a
    	      KeystoreSpi subclass implementation, as described in How to Implement a
    	      Provider in the Java Cryptography Architecture at
    	      http://docs.oracle.com/javase/8/docs/technotes/guides/security/crypto/HowToImplAProvider.html
    
    	      Applications can choose different types of keystore implementations from
    	      different providers, using the getInstance factory method supplied in
    	      the KeyStore class. A keystore type defines the storage and data format
    	      of the keystore information, and the algorithms used to protect
    	      private/secret keys in the keystore and the integrity of the keystore.
    	      Keystore implementations of different types are not compatible.
    
    	      The keytool command works on any file-based keystore implementation. It
    	      treats the keystore location that is passed to it at the command line as
    	      a file name and converts it to a FileInputStream, from which it loads
    	      the keystore information.)The jarsigner and policytool commands can read
    	      a keystore from any location that can be specified with a URL.
    
    	      For keytool and jarsigner, you can specify a keystore type at the
    	      command line, with the -storetype option. For Policy Tool, you can
    	      specify a keystore type with the Keystore menu.
    
    	      If you do not explicitly specify a keystore type, then the tools choose
    	      a keystore implementation based on the value of the keystore.type
    	      property specified in the security properties file. The security
    	      properties file is called java.security, and resides in the security
    	      properties directory, java.home\lib\security on Windows and
    	      java.home/lib/security on Oracle Solaris, where java.home is the runtime
    	      environment directory. The jre directory in the SDK or the top-level
    	      directory of the Java Runtime Environment (JRE).
    
    	      Each tool gets the keystore.type value and then examines all the
    	      currently installed providers until it finds one that implements a
    	      keystores of that type. It then uses the keystore implementation from
    	      that provider.The KeyStore class defines a static method named
    	      getDefaultType that lets applications and applets retrieve the value of
    	      the keystore.type property. The following line of code creates an
    	      instance of the default keystore type as specified in the keystore.type
    	      property:
    
    	      KeyStore keyStore = KeyStore.getInstance(KeyStore.getDefaultType());
    
    	      The default keystore type is jks, which is the proprietary type of the
    	      keystore implementation provided by Oracle. This is specified by the
    	      following line in the security properties file:
    
    	      keystore.type=jks
    
    	      To have the tools utilize a keystore implementation other than the
    	      default, you can change that line to specify a different keystore type.
    	      For example, if you have a provider package that supplies a keystore
    	      implementation for a keystore type called pkcs12, then change the line
    	      to the following:
    
    	      keystore.type=pkcs12
    
    	      Note: Case does not matter in keystore type designations. For example,
    	      JKS would be considered the same as jks.
    
           Certificate
    	      A certificate (or public-key certificate) is a digitally signed
    	      statement from one entity (the issuer), saying that the public key and
    	      some other information of another entity (the subject) has some specific
    	      value. The following terms are related to certificates:
    
    	      Public Keys: These are numbers associated with a particular entity, and
    	      are intended to be known to everyone who needs to have trusted
    	      interactions with that entity. Public keys are used to verify
    	      signatures.
    
    	      Digitally Signed: If some data is digitally signed, then it is stored
    	      with the identity of an entity and a signature that proves that entity
    	      knows about the data. The data is rendered unforgeable by signing with
    	      the entity's private key.
    
    	      Identity: A known way of addressing an entity. In some systems, the
    	      identity is the public key, and in others it can be anything from an
    	      Oracle Solaris UID to an email address to an X.509 distinguished name.
    
    	      Signature: A signature is computed over some data using the private key
    	      of an entity. The signer, which in the case of a certificate is also
    	      known as the issuer.
    
    	      Private Keys: These are numbers, each of which is supposed to be known
    	      only to the particular entity whose private key it is (that is, it is
    	      supposed to be kept secret). Private and public keys exist in pairs in
    	      all public key cryptography systems (also referred to as public key
    	      crypto systems). In a typical public key crypto system, such as DSA, a
    	      private key corresponds to exactly one public key. Private keys are used
    	      to compute signatures.
    
    	      Entity: An entity is a person, organization, program, computer,
    	      business, bank, or something else you are trusting to some degree.
    
    	      Public key cryptography requires access to users' public keys. In a
    	      large-scale networked environment, it is impossible to guarantee that
    	      prior relationships between communicating entities were established or
    	      that a trusted repository exists with all used public keys. Certificates
    	      were invented as a solution to this public key distribution problem. Now
    	      a Certification Authority (CA) can act as a trusted third party. CAs are
    	      entities such as businesses that are trusted to sign (issue)
    	      certificates for other entities. It is assumed that CAs only create
    	      valid and reliable certificates because they are bound by legal
    	      agreements. There are many public Certification Authorities, such as
    	      VeriSign, Thawte, Entrust, and so on.
    
    	      You can also run your own Certification Authority using products such as
    	      Microsoft Certificate Server or the Entrust CA product for your
    	      organization. With the keytool command, it is possible to display,
    	      import, and export certificates. It is also possible to generate self-
    	      signed certificates.
    
    	      The keytool command currently handles X.509 certificates.
    
           X.509 Certificates
    	      The X.509 standard defines what information can go into a certificate
    	      and describes how to write it down (the data format). All the data in a
    	      certificate is encoded with two related standards called ASN.1/DER.
    	      Abstract Syntax Notation 1 describes data. The Definite Encoding Rules
    	      describe a single way to store and transfer that data.
    
    	      All X.509 certificates have the following data, in addition to the
    	      signature:
    
    	      Version: This identifies which version of the X.509 standard applies to
    	      this certificate, which affects what information can be specified in it.
    	      Thus far, three versions are defined. The keytool command can import and
    	      export v1, v2, and v3 certificates. It generates v3 certificates.
    
    	      X.509 Version 1 has been available since 1988, is widely deployed, and
    	      is the most generic.
    
    	      X.509 Version 2 introduced the concept of subject and issuer unique
    	      identifiers to handle the possibility of reuse of subject or issuer
    	      names over time. Most certificate profile documents strongly recommend
    	      that names not be reused and that certificates should not make use of
    	      unique identifiers. Version 2 certificates are not widely used.
    
    	      X.509 Version 3 is the most recent (1996) and supports the notion of
    	      extensions where anyone can define an extension and include it in the
    	      certificate. Some common extensions are: KeyUsage (limits the use of the
    	      keys to particular purposes such as signing-only) and AlternativeNames
    	      (allows other identities to also be associated with this public key, for
    	      example. DNS names, email addresses, IP addresses). Extensions can be
    	      marked critical to indicate that the extension should be checked and
    	      enforced or used. For example, if a certificate has the KeyUsage
    	      extension marked critical and set to keyCertSign, then when this
    	      certificate is presented during SSL communication, it should be rejected
    	      because the certificate extension indicates that the associated private
    	      key should only be used for signing certificates and not for SSL use.
    
    	      Serial number: The entity that created the certificate is responsible
    	      for assigning it a serial number to distinguish it from other
    	      certificates it issues. This information is used in numerous ways. For
    	      example, when a certificate is revoked its serial number is placed in a
    	      Certificate Revocation List (CRL).
    
    	      Signature algorithm identifier: This identifies the algorithm used by
    	      the CA to sign the certificate.
    
    	      Issuer name: The X.500 Distinguished Name of the entity that signed the
    	      certificate. See X.500 Distinguished Names. This is typically a CA.
    	      Using this certificate implies trusting the entity that signed this
    	      certificate. In some cases, such as root or top-level CA certificates,
    	      the issuer signs its own certificate.
    
    	      Validity period: Each certificate is valid only for a limited amount of
    	      time. This period is described by a start date and time and an end date
    	      and time, and can be as short as a few seconds or almost as long as a
    	      century. The validity period chosen depends on a number of factors, such
    	      as the strength of the private key used to sign the certificate, or the
    	      amount one is willing to pay for a certificate. This is the expected
    	      period that entities can rely on the public value, when the associated
    	      private key has not been compromised.
    
    	      Subject name: The name of the entity whose public key the certificate
    	      identifies. This name uses the X.500 standard, so it is intended to be
    	      unique across the Internet. This is the X.500 Distinguished Name (DN) of
    	      the entity. See X.500 Distinguished Names. For example,
    
    	      CN=Java Duke, OU=Java Software Division, O=Oracle Corporation, C=US
    
    	      These refer to the subject's common name (CN), organizational unit (OU),
    	      organization (O), and country (C).
    
    	      Subject public key information: This is the public key of the entity
    	      being named with an algorithm identifier that specifies which public key
    	      crypto system this key belongs to and any associated key parameters.
    
           Certificate Chains
    	      The keytool command can create and manage keystore key entries that each
    	      contain a private key and an associated certificate chain. The first
    	      certificate in the chain contains the public key that corresponds to the
    	      private key.
    
    	      When keys are first generated, the chain starts off containing a single
    	      element, a self-signed certificate. See -genkeypair in Commands. A self-
    	      signed certificate is one for which the issuer (signer) is the same as
    	      the subject. The subject is the entity whose public key is being
    	      authenticated by the certificate. Whenever the -genkeypair command is
    	      called to generate a new public/private key pair, it also wraps the
    	      public key into a self-signed certificate.
    
    	      Later, after a Certificate Signing Request (CSR) was generated with the
    	      -certreq command and sent to a Certification Authority (CA), the
    	      response from the CA is imported with -importcert, and the self-signed
    	      certificate is replaced by a chain of certificates. See the -certreq and
    	      -importcert options in Commands. At the bottom of the chain is the
    	      certificate (reply) issued by the CA authenticating the subject's public
    	      key. The next certificate in the chain is one that authenticates the
    	      CA's public key.
    
    	      In many cases, this is a self-signed certificate, which is a certificate
    	      from the CA authenticating its own public key, and the last certificate
    	      in the chain. In other cases, the CA might return a chain of
    	      certificates. In this case, the bottom certificate in the chain is the
    	      same (a certificate signed by the CA, authenticating the public key of
    	      the key entry), but the second certificate in the chain is a certificate
    	      signed by a different CA that authenticates the public key of the CA you
    	      sent the CSR to. The next certificate in the chain is a certificate that
    	      authenticates the second CA's key, and so on, until a self-signed root
    	      certificate is reached. Each certificate in the chain (after the first)
    	      authenticates the public key of the signer of the previous certificate
    	      in the chain.
    
    	      Many CAs only return the issued certificate, with no supporting chain,
    	      especially when there is a flat hierarchy (no intermediates CAs). In
    	      this case, the certificate chain must be established from trusted
    	      certificate information already stored in the keystore.
    
    	      A different reply format (defined by the PKCS #7 standard) includes the
    	      supporting certificate chain in addition to the issued certificate. Both
    	      reply formats can be handled by the keytool command.
    
    	      The top-level (root) CA certificate is self-signed. However, the trust
    	      into the root's public key does not come from the root certificate
    	      itself, but from other sources such as a newspaper. This is because
    	      anybody could generate a self-signed certificate with the distinguished
    	      name of, for example, the VeriSign root CA. The root CA public key is
    	      widely known. The only reason it is stored in a certificate is because
    	      this is the format understood by most tools, so the certificate in this
    	      case is only used as a vehicle to transport the root CA's public key.
    	      Before you add the root CA certificate to your keystore, you should view
    	      it with the -printcert option and compare the displayed fingerprint with
    	      the well-known fingerprint obtained from a newspaper, the root CA's Web
    	      page, and so on.
    
           The cacerts Certificates File
    	      A certificates file named cacerts resides in the security properties
    	      directory, java.home\lib\security on Windows and java.home/lib/security
    	      on Oracle Solaris, where java.home is the runtime environment's
    	      directory, which would be the jre directory in the SDK or the top-level
    	      directory of the JRE.
    
    	      The cacerts file represents a system-wide keystore with CA certificates.
    	      System administrators can configure and manage that file with the
    	      keytool command by specifying jks as the keystore type. The cacerts
    	      keystore file ships with a default set of root CA certificates. You can
    	      list the default certificates with the following command:
    
    	      keytool -list -keystore java.home/lib/security/cacerts
    
    	      The initial password of the cacerts keystore file is changeit. System
    	      administrators should change that password and the default access
    	      permission of that file upon installing the SDK.
    
    	      Note: It is important to verify your cacerts file. Because you trust the
    	      CAs in the cacerts file as entities for signing and issuing certificates
    	      to other entities, you must manage the cacerts file carefully. The
    	      cacerts file should contain only certificates of the CAs you trust. It
    	      is your responsibility to verify the trusted root CA certificates
    	      bundled in the cacerts file and make your own trust decisions.
    
    	      To remove an untrusted CA certificate from the cacerts file, use the
    	      delete option of the keytool command. You can find the cacerts file in
    	      the JRE installation directory. Contact your system administrator if you
    	      do not have permission to edit this file
    
           Internet RFC 1421 Certificate Encoding Standard
    	      Certificates are often stored using the printable encoding format
    	      defined by the Internet RFC 1421 standard, instead of their binary
    	      encoding. This certificate format, also known as Base64 encoding, makes
    	      it easy to export certificates to other applications by email or through
    	      some other mechanism.
    
    	      Certificates read by the -importcert and -printcert commands can be in
    	      either this format or binary encoded. The -exportcert command by default
    	      outputs a certificate in binary encoding, but will instead output a
    	      certificate in the printable encoding format, when the -rfc option is
    	      specified.
    
    	      The -list command by default prints the SHA1 fingerprint of a
    	      certificate. If the -v option is specified, then the certificate is
    	      printed in human-readable format. If the -rfc option is specified, then
    	      the certificate is output in the printable encoding format.
    
    	      In its printable encoding format, the encoded certificate is bounded at
    	      the beginning and end by the following text:
    
    	      -----BEGIN CERTIFICATE-----
    	      encoded certificate goes here.
    	      -----END CERTIFICATE-----
    
           X.500 Distinguished Names
    	      X.500 Distinguished Names are used to identify entities, such as those
    	      that are named by the subject and issuer (signer) fields of X.509
    	      certificates. The keytool command supports the following subparts:
    
    	      commonName: The common name of a person such as Susan Jones.
    
    	      organizationUnit: The small organization (such as department or
    	      division) name. For example, Purchasing.
    
    	      localityName: The locality (city) name, for example, Palo Alto.
    
    	      stateName: State or province name, for example, California.
    
    	      country: Two-letter country code, for example, CH.
    
    	      When you supply a distinguished name string as the value of a -dname
    	      option, such as for the -genkeypair command, the string must be in the
    	      following format:
    
    	      CN=cName, OU=orgUnit, O=org, L=city, S=state, C=countryCode
    
    	      All the italicized items represent actual values and the previous
    	      keywords are abbreviations for the following:
    
    	      CN=commonName
    	      OU=organizationUnit
    	      O=organizationName
    	      L=localityName
    	      S=stateName
    	      C=country
    
    	      A sample distinguished name string is:
    
    	      CN=Mark Smith, OU=Java, O=Oracle, L=Cupertino, S=California, C=US
    
    	      A sample command using such a string is:
    
    	      keytool -genkeypair -dname "CN=Mark Smith, OU=Java, O=Oracle, L=Cupertino,
    	      S=California, C=US" -alias mark
    
    	      Case does not matter for the keyword abbreviations. For example, CN, cn,
    	      and Cn are all treated the same.
    
    	      Order matters; each subcomponent must appear in the designated order.
    	      However, it is not necessary to have all the subcomponents. You can use
    	      a subset, for example:
    
    	      CN=Steve Meier, OU=Java, O=Oracle, C=US
    
    	      If a distinguished name string value contains a comma, then the comma
    	      must be escaped by a backslash (\) character when you specify the string
    	      on a command line, as in:
    
    	      cn=Peter Schuster, ou=Java\, Product Development, o=Oracle, c=US
    
    	      It is never necessary to specify a distinguished name string on a
    	      command line. When the distinguished name is needed for a command, but
    	      not supplied on the command line, the user is prompted for each of the
    	      subcomponents. In this case, a comma does not need to be escaped by a
    	      backslash (\).
    
    WARNINGS
       IMPORTING TRUSTED CERTIFICATES WARNING
           Important: Be sure to check a certificate very carefully before importing it as
           a trusted certificate.
    
           Windows Example:
    
           View the certificate first with the -printcert command or the -importcert
           command without the -noprompt option. Ensure that the displayed certificate
           fingerprints match the expected ones. For example, suppose sends or emails you
           a certificate that you put it in a file named \tmp\cert. Before you consider
           adding the certificate to your list of trusted certificates, you can execute a
           -printcert command to view its fingerprints, as follows:
    
    	 keytool -printcert -file \tmp\cert
    	   Owner: CN=ll, OU=ll, O=ll, L=ll, S=ll, C=ll
    	   Issuer: CN=ll, OU=ll, O=ll, L=ll, S=ll, C=ll
    	   Serial Number: 59092b34
    	   Valid from: Thu Sep 25 18:01:13 PDT 1997 until: Wed Dec 24 17:01:13 PST 1997
    	   Certificate Fingerprints:
    		MD5:  11:81:AD:92:C8:E5:0E:A2:01:2E:D4:7A:D7:5F:07:6F
    		SHA1: 20:B6:17:FA:EF:E5:55:8A:D0:71:1F:E8:D6:9D:C0:37:13:0E:5E:FE
    		SHA256: 90:7B:70:0A:EA:DC:16:79:92:99:41:FF:8A:FE:EB:90:
    			17:75:E0:90:B2:24:4D:3A:2A:16:A6:E4:11:0F:67:A4
    
           Oracle Solaris Example:
    
           View the certificate first with the -printcert command or the -importcert
           command without the -noprompt option. Ensure that the displayed certificate
           fingerprints match the expected ones. For example, suppose someone sends or
           emails you a certificate that you put it in a file named /tmp/cert. Before you
           consider adding the certificate to your list of trusted certificates, you can
           execute a -printcert command to view its fingerprints, as follows:
    
    	 keytool -printcert -file /tmp/cert
    	   Owner: CN=ll, OU=ll, O=ll, L=ll, S=ll, C=ll
    	   Issuer: CN=ll, OU=ll, O=ll, L=ll, S=ll, C=ll
    	   Serial Number: 59092b34
    	   Valid from: Thu Sep 25 18:01:13 PDT 1997 until: Wed Dec 24 17:01:13 PST 1997
    	   Certificate Fingerprints:
    		MD5:  11:81:AD:92:C8:E5:0E:A2:01:2E:D4:7A:D7:5F:07:6F
    		SHA1: 20:B6:17:FA:EF:E5:55:8A:D0:71:1F:E8:D6:9D:C0:37:13:0E:5E:FE
    		SHA256: 90:7B:70:0A:EA:DC:16:79:92:99:41:FF:8A:FE:EB:90:
    			17:75:E0:90:B2:24:4D:3A:2A:16:A6:E4:11:0F:67:A4
    
           Then call or otherwise contact the person who sent the certificate and compare
           the fingerprints that you see with the ones that they show. Only when the
           fingerprints are equal is it guaranteed that the certificate was not replaced
           in transit with somebody else's certificate such as an attacker's certificate.
           If such an attack took place, and you did not check the certificate before you
           imported it, then you would be trusting anything the attacker signed, for
           example, a JAR file with malicious class files inside.
    
           Note: It is not required that you execute a -printcert command before importing
           a certificate. This is because before you add a certificate to the list of
           trusted certificates in the keystore, the -importcert command prints out the
           certificate information and prompts you to verify it. You can then stop the
           import operation. However, you can do this only when you call the -importcert
           command without the -noprompt option. If the -noprompt option is specified,
           then there is no interaction with the user.
    
       PASSWORDS WARNING
           Most commands that operate on a keystore require the store password. Some
           commands require a private/secret key password. Passwords can be specified on
           the command line in the -storepass and -keypass options. However, a password
           should not be specified on a command line or in a script unless it is for
           testing, or you are on a secure system. When you do not specify a required
           password option on a command line, you are prompted for it.
    
       CERTIFICATE CONFORMANCE WARNING
           The Internet standard RFC 5280 has defined a profile on conforming X.509
           certificates, which includes what values and value combinations are valid for
           certificate fields and extensions. See the standard at
           http://tools.ietf.org/rfc/rfc5280.txt
    
           The keytool command does not enforce all of these rules so it can generate
           certificates that do not conform to the standard. Certificates that do not
           conform to the standard might be rejected by JRE or other applications. Users
           should ensure that they provide the correct options for -dname, -ext, and so
           on.
    
    NOTES
       IMPORT A NEW TRUSTED CERTIFICATE
           Before you add the certificate to the keystore, the keytool command verifies it
           by attempting to construct a chain of trust from that certificate to a self-
           signed certificate (belonging to a root CA), using trusted certificates that
           are already available in the keystore.
    
           If the -trustcacerts option was specified, then additional certificates are
           considered for the chain of trust, namely the certificates in a file named
           cacerts.
    
           If the keytool command fails to establish a trust path from the certificate to
           be imported up to a self-signed certificate (either from the keystore or the
           cacerts file), then the certificate information is printed, and the user is
           prompted to verify it by comparing the displayed certificate fingerprints with
           the fingerprints obtained from some other (trusted) source of information,
           which might be the certificate owner. Be very careful to ensure the certificate
           is valid before importing it as a trusted certificate. See Importing Trusted
           Certificates Warning. The user then has the option of stopping the import
           operation. If the -noprompt option is specified, then there is no interaction
           with the user.
    
       IMPORT A CERTIFICATE REPLY
           When you import a certificate reply, the certificate reply is validated with
           trusted certificates from the keystore, and optionally, the certificates
           configured in the cacerts keystore file when the -trustcacerts option is
           specified. See The cacerts Certificates File.
    
           The methods of determining whether the certificate reply is trusted are as
           follows:
    
           · If the reply is a single X.509 certificate, then the keytool command attempts
    	 to establish a trust chain, starting at the certificate reply and ending at a
    	 self-signed certificate (belonging to a root CA). The certificate reply and
    	 the hierarchy of certificates is used to authenticate the certificate reply
    	 from the new certificate chain of aliases. If a trust chain cannot be
    	 established, then the certificate reply is not imported. In this case, the
    	 keytool command does not print the certificate and prompt the user to verify
    	 it, because it is very difficult for a user to determine the authenticity of
    	 the certificate reply.
    
           · If the reply is a PKCS #7 formatted certificate chain or a sequence of X.509
    	 certificates, then the chain is ordered with the user certificate first
    	 followed by zero or more CA certificates. If the chain ends with a self-
    	 signed root CA certificate and the-trustcacerts option was specified, the
    	 keytool command attempts to match it with any of the trusted certificates in
    	 the keystore or the cacerts keystore file. If the chain does not end with a
    	 self-signed root CA certificate and the -trustcacerts option was specified,
    	 the keytool command tries to find one from the trusted certificates in the
    	 keystore or the cacerts keystore file and add it to the end of the chain. If
    	 the certificate is not found and the -noprompt option is not specified, the
    	 information of the last certificate in the chain is printed, and the user is
    	 prompted to verify it.
    
           If the public key in the certificate reply matches the user's public key
           already stored with alias, then the old certificate chain is replaced with the
           new certificate chain in the reply. The old chain can only be replaced with a
           valid keypass, and so the password used to protect the private key of the entry
           is supplied. If no password is provided, and the private key password is
           different from the keystore password, the user is prompted for it.
    
           This command was named -import in earlier releases. This old name is still
           supported in this release. The new name, -importcert, is preferred going
           forward.
    
    SEE ALSO
           · jar(1)
    
           · jarsigner(1)
    
           · Trail: Security Features in Java SE at
    	 http://docs.oracle.com/javase/tutorial/security/index.html
    
    JDK 8				     03 March 2015			    keytool(1)
    

Log in to reply
 

© Lightnetics 2024